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Urgency of the research. Computer modeling changes the teaching methodology, the way of thinking and the
possibilities of applications. It helps to move from external to internal properties and from individual to related properties.
The development of the product is accelerated by experimenting with a computer model.

Target setting. Kinematic analysis in Matlab and MSC Adams View. The aim is to investigate the rotation of individual
members of the robotic system and to determine the spatial movement of the end effector.

Actual scientific researches and issues analysis. MSC Adams represents dynamic simulators of virtual prototypes of
mechanical systems. Virtual prototypes allow to model, analyze and optimize the future products and to examine their
properties before building a real prototype. This approach is suitable for developing miniature mechatronic elements as well
as complex systems.

Uninvestigated parts of general matters defining. Virtual prototypes represent a suitable resource for testing of control
and regulation procedures.

The research objective. Compilation of a virtual prototype of a mechanical system that has all the decisive features and
is computationally stable.

The statement of basic materials. Virtual model is a mathematical representation of real-world structures, simulating all its
physical properties virtually.

Conclusions. The aim was to determine the kinematic properties and also to evaluate the influence of the parameters of
the mechanism which influence these kinematic properties. The matrix method was used. The process of the solution
consisted of determining the transformation matrices of the coordinate systems, the kinematic analysis of the industrial robot
and the graphical representation of the effector handling space.

Keywords: virtual model; open kinematic chain; robotic system; software simulation; end-effector; transformation
matrices.

Fig.: 11. References: 17.

Introduction. The development of technology and mechanization has led to the
development of the theory of planar and spatial mechanisms. Spatial mechanisms are used in
various production machines, for example, in robots and manipulators. Analytical analysis of
mechanisms describes the movement of driven members or some points of these members
depending on the known or prescribed movement of the driving members. It means the
determination of the position, speed and acceleration of the studied members and points
depending on the movement of the driving member. It is possible to use the vector method for
kinematic solution of spatial mechanisms, which was described by V. A. Zinovev. This
method, however, is quite complicated for scalar notation of vector equations. More suitable
is the usage of the matrix notation. The fourth order matrices were introduced by J.Denavit
and R.S.Hartenberg. Similarly, G.S.Kalicin solved some problems of planar and spherical
mechanisms by the matrix notation. The possibility of using quaternions or biquaternions in
kinematics of the rigid bodies was pointed out by J. Novak. General methods of analytical
analyses were studied by S.G. Kislicin and J. F. Moroshkin. The czech author V. Brat
introduced into practice the usage of a matrix notation in analysis of kinematics of spatial
mechanisms. Individual simultaneous movements can be described by matrix equations.
There are relationships derived for both simple and simultaneous movements. The suitability
and widespread usage of the matrix method is given not only by the possibility to describe the
directly the space of the individual members, but it is also appropriate for use in computers
with advanced methods of numerical solution of systems of equations.

This paper presents the application of the matrix method in the kinematic analysis of a
simple manipulator model. Manipulators are composed of open kinematic chains. Matlab
and MSC Adams -View computer programs were used in their analysis.

Model of manipulator with 2 degrees of freedom of movement R-R.

The mechanical system representing the open kinematic chain consists of two members 2
and 3 and the base 1 (Fig. 1). The member 2 with length L rotates around the axis z; = z» by
the angle ¢2 and the member 3 with length /3 rotates around the axis z3 by the angle @3. We
investigate the absolute motion of the member 3 and its point M, determine the position
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vector rim (position of the point M relative to the base 1) using the matrix method, using the
transformation matrices of the basic movements. We also express the velocity vim and the
acceleration a1m of point M relative to the base 1.
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Fig. 1. Coordinate systems of the manipulator with 2 DOF (q1=¢2, q2= ¢3)

We introduce the coordinate systems of individual members (Fig. 1). The movement of
the member 2 with respect to the base 1 is rotational, the coordinate system O, x2, y2, z2 of
the member 2 is rotated with respect to the base coordinate system O1, X1, y1, z1 by the angle
¢2 around the base axis while z; = z». The coordinate system O3, X3, y3, z3 of the member 3 is
shifted by the length of the first element /> along the x; axis and rotated by angle @3 around
the z3 axis. Generalized coordinates for rotational movement of members are: qi=¢2 and
q2=3. We search: rim, vim, @im.

The motion of the member 3 with respect to the base 1 is determined by the movement of
the point M and described by the equation:

2
rim =HTi,i+1 T3 (1)
i-1
the relative spherical motion is described by the transformation matrix:

2
T3 = HTi,i+1 (2)
i1

The matrix equation of the trajectory of the point M relative to the coordinate system of
the base 1 is:

riy =Ty Tz .15, (3)
where:

Ty, =Tz (02) 4)

To3 =Tz (03) Tz () (5)
and:

ra =[5 0 0 1f (6)
then
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0

0
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0

[(cppcps—spysp)la+cprcpsly—sprso3ly
sprcp3tcpysp)lz+sprycpslh+cpy syl

0
1

(=]

(7)

(8)

The matlab script (Fig.2a) for the calculation of the position vector in symbolic form and
the matlab script (Fig.2b) to determine the trajectory of point M:

cle

syws gl g2 12 13

TiZ=[cosigl) -sinigl) O O;sin(gl) cos(gl) 0 0:0 0 1 0;0 0 0 1]
T23ir=[cos(g2) -sinf(g2) 0 O:;sin(ge) cos(g2) 0 0;0 0 1 0;0 O O 1]
Tg3t=[1 00 12:0 1 00:00 10:000 1]

T23=Ta3r*T23t

T13=T12*Tz23

r3M=[13;0;0;1]

rif='po=ition vector of M’

r1M=T13*:3M

x1M giM z1M='position x1Mit), 71iMic), z1Mic)’

X1M=riM(1,1}

TIN=rlM(z, 1)

21M=ri1M(3,1)

a

Fig. 2. M — file for a) position vector of the manipulator riy ,b) trajectory
of the manipulator yim =yim (X1 ) and position xiv = Xim (t), yive = Vi (t)

figure (4)

get (4, 'Namwe' , ' Trajectory vi1M=£ (x1M) of M, position x1M=x1M(t),

cle
1z=0.4; %
13=0.3; %

m

m

omegal=0.35;
omegaz=0.35;
t={1: 0.001:
®x1M=(cos (omegal. *t) . *cos (omegsz . *L) -sin(omegal. *t) . *sin(omega . L)) ¥13 ...
+icos (omegal. *t) . *oos (omegaz . *t) —3in(omegal. *t) . fein(omegaz . *T) ) *1la;
FlM=(sin{omegal.*t) . *cos(omegas: . *t) +0o0s (omegal. o) . *sin(omegaZ . FL) ) Y13 ...

30)

rradis,
zradis,

yiM=yillic) '}

+izin{omegal.¥t) . *cos (omegaZ . L) +cos (omegal. *t) . fsin(omegaZ . vo) ) Y1Z;
subplotil,3,1)

plot (x1M, ¥1M, 'k', 'Linellidth',

xlakhel (' =1M
vlahel (' y1M

grid on
hold on

R
RE
title (' Trajectory yiM=gyiM(=1M)'):

subplotil,3,2)
plot(t,x1M, 'kb', ' LinsWidth',
titlel'x1M=x1M(t) "),
xlabel (' Time [=sec]'):
wlabel ['x1M [m] '):

grid on

subplot(1,3,3)
plocit,¥v1M, 'g', 'LineWidch',
title (' FlM=g1M(t]) '] :
xlabel(' Time [sec]'):
wlapel (' 1M [m] ')}

grid on

1.5):

1.50;

1.5):

Solution of the position vector 7y, position x;i; and y;n in symbolic form in Matlab are

shown in Figure 3.
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Ti2=
[ cos(ql), -sin(ql), 0, 0]
[ sin(ql), cos(ql), 0, 0]
[ 0, 0, 1 0]
[ 0, 0, 0, 1]
T23r=
[ cos(q2), -sin(q2), 0, 0]

[ sin(q2), cos(q2), 0, 0]

0, 0, 1 0]

0, 0, 1]

W

=

<)
oree
- o B

e
see s

o g
looro

n W
o

s(q2), -sin(q2), 0, cos(q2)*12]
sin(q2), cos(q2), 0, sin(q2)*12]
0, 0, I 0]
0, 0, 0, 1]

—_ g ——
—
w
I

cos(ql)*cos(q2)-sin(ql)*sin(q2), -cos(ql)*sin(q2)-sin(ql)*cos(q2), 0,
cos(ql)*cos(q2)*12-sin(q1)*sin(q2)*12]
[ sin(ql)*cos(q2)+cos(ql)*sin(q2),  cos(ql)*cos(q2)-sin(ql)*sin(q2), 0,
sin(q1)*cos(q2)*12+cos(ql)*sin(q2)*12]
[ 0, 0, 1, 0]
[ 0, 0, 0, 1]
BM=
13

0

0

1
rIM=
position vector of M
rIM=

(cos(ql)*cos(q2)-sin(ql)*sin(q2))*13+cos(ql)*cos(q2)*12-sin(ql)*sin(q2)*12
(sin(q1)*cos(q2)+cos(ql)*sin(q2))*13+sin(q1)* cos(q2)*12+cos(ql)*sin(q2)*12

0
1

xIM_ylM_zIM=
position x IM(t),y IM(t). z1M(t)
xIM=
(cos(ql)*cos(q2)-sin(ql)*sin(q2))*13+cos(ql)*cos(q2)*12-sin(q1 )*sin(q2)*12
yiIM=
(sin(q1)*cos(q2)+cos(ql)*sin(q2))*13+sin(q1)*cos(q2)*12+cos(ql)*sin(q2)*12
zIM=
0

Fig. 3. Solution in Matlab of the position vector riu of the manipulator

The trajectory of the manipulator yim=yim(Xx1m), position Xxim = X1m (t), yim = yim (t) of the
point M is shown in Figure 4.

Trajectory y1M=y1M(x1M) x1M=x1M(t) y1M=y 1M(t)
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Fig. 4. Trajectory of the manipulator yim =yim (X1nm ), position xiu = X1um (1), yim= yim (1)

87



Ne 4 (14), 2018 TEXHIYHI HAVKHM TA TEXHOJIOTI

TECHNICAL SCIENCES AND TECHNOLOGIES

Model of manipulator with 3 degrees of freedom of movement.

The manipulator in Fig. 5 is an open kinematic chain of four members 1, 2, 3, and 4. The
chain is four-dimensional with 3 degrees of freedom of movement. The member 2 is rotated
about the z; axis, the member 3 is moved along the member 2 in the zo= z3 direction and the
member 4 moves along the member 3 in the direction of the axis x3= x4. We investigate the
absolute movement of the member 4 and its point M. The movement of the member 4 is
expressed by means of the basic decomposition to the reference point M. It is necessary to
determine by the matrix method, by means of transformation matrices of basic movements the
position vector rim (position of point M relative to base 1) velocity vim and acceleration aim
of the point M relative to base 1.

Zy
Z1E ZZE 23 d4
Y3 \/
g, b 4 Ya M
ncun A
| 03 S X3= X4
N, ds
2 Y,
E23 Y1
| N
X
1 — (p‘|2 2
OF G,

X1
Fig. 5. Model of the manipulator with 3 DOF

We introduce the coordinate systems of individual members (Fig 5). The movement of the
member 2 with respect to the base 1 is rotational, the coordinate system O2, X2, y2, Z2 of the
member 2 is rotated with respect to the base coordinate system O1, X1, y1, z1 by the angle @12
around the axis  zi = z». The coordinate system O3, x3, y3, z3 of the member 3 is offset by the
value &3 in the direction of the z; axis of the member 2. The member 4 moves on the member
3 by the value 134 in the x3 direction of the member 3. The length of the member 4 is d4 and
the goal is to determine the movement of the end point M.

The generalized coordinate of the rotational motion of the member 2 is qi=¢i2 and the
generalized coordinate of the translational motion of the member 3 is qx=&3 and the
generalized coordinate of the translational motion of the member 4 is qz= m34. In the initial
position, the coordinate systems of members 1, 2, 3, 4 coincide g=[0 0 0]".

The position rim, the velocity vim and the acceleration aim of the point M relative to the
base coordinate system are investigated.

The motion of the member 4 with respect to the base 1 is determined by the motion of the
point M and described by the equation:
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3
Iy = H T i1 -Tam )
i-1

The relative spherical motion is described by the transformation matrix:

3
Ty = HTi,i+1 (10)
i-1

We express the individual transformation matrices using the basic matrices. In each
member, we introduce coordinate systems (Fig. 5) and mark the dimensions and coordinates.
Then we write the transformation matrices using the transformation matrices of the basic
movements in the form:

Tiy =Ty6(01) (11)
Ty =Ty3(53) (12)
Ty =T;(734) (13)

Then we obtain the equation of the trajectory of the point M of member 4 in the
coordinate system of the base 1 by means of the basic matrices:

riy =Ty Toy  Tay gy (14)
where
ro=[ds 0 b 1T (15)
and
rie =Tz6 (012)-T23(E03) - T21(734). vaps =

[cos (1) —sin (@) 0 0 1 00 0 1 0 0 734 ][dy
_|sin (@12)  cos (pp) O O 010 O 010 O 0 (16)
10 0 1 0" [0 01 &30 |00 1 b |
i 0 0 0 1 000 1 00 0 1 1
[cos (912) —sin (p12) O 734 cos(@py) |[da| [dacos (@12)+734 cos (o)
_|sin (@12) cos (pi2) 0 mzgsin(ein) || O || dasin (p12)+ 34 sin (1)
0 0 1 $23 IR b+&y
0 0 0 1 1 1
Position vector of point M with respect to the base coordinate system O, X1, y1, Z1:
Xapr | [da cos (12 )+734 cos(o12)
dy sin + sin (¢1,)
Py = Yam | _| %4 ((Plz) 7734 ?12 (17)
Zapm b+&n
1 1
Velocity vector of point M with respect to the base coordinate system O1, X1, y1, Z1:
134 - COS(¢12)'(d4 +7734)- P12 sin (¢y5)
. 134 - sin (@) +\dyg +1134)- @12 .cos (@12
Viv =Ty = : ( ) (18)
3
0

Acceleration vector of point M with respect to the base coordinate system O1, xi1, yi1, Zi:
g cos(12) -3 Prasin (o12)- (1o (da + 730+ 61 54 Jsin (p1a)- 9 (da +734 )05 (p12)
ayy = Vi =iy =| D450 (912)+ 7734 P12 cOs (p12)+ (312 e +'7}4)+ 912134 )0 (p12)- olda +734)-sin(pn) (19)
3

0

&9
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Solution of the position of the point M in the Matlab program is performed by m-files

(Fig.6a, b):
figure(3)
Set (5, 'Name','Position x1M=x1M(t), viM=v1M(t), =zlM==ziM(t)')

d4=0.5; Eom

h=0.3; 5 m

omegazl=0.35; yradis,
w23=0.1; zmf =
wid=0,1; mf =
t={1: 0.001: 30}

®1M=c4, *cos(omegaZl. *t) +(v34.¥L) . *ocos (omegaZl. *L) ;
TiMN=d4.*sin{omegaZl. *t) +(v3i4. t) . *sin(owegazl. ) ;
z1M=h+v3i4. *r;

subplot (2,2, 1)

plotd (x1M, viM, 218, 'k','LineWidch', 1.5):
title('Trajectory of point M of the wember 4');
xlabel ('=x1M ')

Tlabel ('yiM ')

zlabel ('z1M ') ;

grid on

hold on

subplot (2,2,2)

plotit,®x1M,'c','LineWidch', 1.5):
title|'Position x1M=x1M(t) of the mewber 4');
% legend('<1Mit) ')

®xlabel ('t [2]'):vlabel ('x1M [m]'):;

grid on

subplot (2,2,3)

ploti{t,y1M, 'm', 'LineWidch', 1.5);
title('Position v1M=y1Mit) of the menber 4');
% legend('yiMit) ')

xlabel ('t [s]'):;vlabel('vliM [m]');

grid on

subplot (2,2, 4]

plotit,z21M,'g','LineWidth', 1.5):
title('Position z1M==z1M(t) of the menber 4');
Zlegend('=1Mit) ') ;

xlabel ('t [s]'):;vlabel('=z1M [m]');

grid on

a

figure (&)

set (5, 'Name', 'Position x1M=x1Mit), viN=v1M(t), =z1M==z1M(t)')
d4=0.5; % om

h=0.3; % m

omegaz 1=0.35; sradls,

vz3i=0.1; smf s

vid4=0.1; smf s

t={l: 0.001: 30)

®1M=d4. *cosjomegaZl, *o) +(v3i4. %) . *cos (omegail. *t)
TiM=d4. *sin(omegaZl. *c)+(v3i4. ) . ¥sin(omegazl. *t) ;
21M=h+v3id. *r;

subploti{Z,2,1)

plotd (x1M, v1M, =18, 'k', 'LineWidch', 1.5):
title (' Trajectory of point M of the mewnber 4');:
xlabel('x1M '):ylakel('yviM '}j:;=zlabel('=z1H ');:
grid on

hold on

subplot(2,2,2)

plot (=x1M, vi1M, 'c', 'LineWidth', 1.5):

title (' ¥wiM=v1M(x1M) of mewber 4');
Xlabel('x1M [mw]'):;vlabel('v1M [m]'):

grid on

subplot(2,2,3)

plot (x1M, =z1M, 'm' , 'LineWidth', 1.5);

title(' =1M==z1M(x1M) of wmewber 4'):;

¥xlebel ('x1H [w] ') ;vlabel('=z1M [m]'):

grid on

subplot(Z,2,4)

plot(viM, =1M, 'g','LineWidth', 1.5):

title (' =1M==z1M(v1M] of mewber 4');:

¥xlebel ('v1H [mw]');vlabel('=z1M [m]'):

grid on

b

Fig. 6. M —file of the trajectory and a) position xy = xm(t), yu = ym(t), and zu = zu(?),
b) position yy = ym (Xm), zm = zm (Ym), z2m = zm (Xm)
The trajectory and position xim=x1m(t), yim=y1m(t), Zim=z1m (t) of the point M is shown in

Fig. 7.

Trajectory of point M of the member 4 Position x1M=x1M(t) of the member 4

4o -

N
- !
|
|
|
| ~
|
|

y1M [m]

t[s]

4 r \
5| S SN N
l !
OF ot
| |
2p----- T 1%~
| |
| |
-4 L L
0 10 20 30
t[s]

t[s]

Fig. 7. Trajectory and position xiy =xim (t), yim =yim (1), zim =zim (t) of the manipulator
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The trajectory and position yim=yim(xim), Zim=zim(Xim), Zim=2zim (yim) of the point M is
shown in Figure 8.

Trajectory of point M of the member 4 y1M=y 1M(x1M) of member 4
4 : ; ;

y1M [m]
o

0 1 1
yiM -5 -5 x1Mm 4 2 0 2 4
x1M [m]

Fig. 8. Trajectory and position yivu =yim (X1m), Zim =Z1m (X1m),
and ziy = zim (Vim) of the manipulator
Computer simulation in MSC Adams software. An example of how to use Adams to
simulate the movement of a R-R-T-R model manipulator is in the following section.

We create a model of the R-R-T-R manipulator with the basket according to Fig. 9a)-c)
using modeling elements and procedures for building body, geometric and kinematic links
in MSC.ADAMS/View and verifying its functionality. The manipulator consists of the base
part on which is mounted the stand. There is an arm with a basket at the end. Once the model
is assembled, another task is to investigate the endpoint movement. The solution is shown
in graphical form. A preview of the assembled model of the manipulator and the simulation of
its movement is shown in Fig. 9a)-f).

d e f
Fig. 9. Models of the manipulator in MSC Adams- View
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The trajectory of the end-effector during the simulation is shown in the Fig. 10.

Fig. 10. Model of the manipulator- trajectory of the end-effector
Movement is depicted using the Postprocessor in Fig. 11.

manipulator
20.0 15.0
150{[ —xm] | 100
= 100 —
= = 50
= a0 I 1 1 1 1 I T
= o0 = o
= £q = o N N 50
-10.0 ——— — T i i 0.0 I - | i
-150 -15.0
00 01 02 03 04 05 06 0V 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Time (sec) Time (sec)
200 220
—y_M 20.57| — vector of paosition r_M O 1
=3 = 19.0
E 150 £ |
i ~= 175
= = 150 i =
> 10.0 “ 145
13.0
50 115
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Time (sec) Time {sec)

Fig. 11. Position xu, yu, zu and position vector ry of the end effector

The position xv=xm(t), yv=ym(t), zm=zm(t) and magnitude of the position vector ry=rm(t)
of the point M of the end effectors in Postprocessor is shown in Figure 11.

Conclusion. This work deals with the problem of kinematic analysis of an open kinematic
chain of an industrial robot. The aim was to determine the kinematic properties and also to
evaluate the influence of the parameters of the mechanism which influence these kinematic
properties. The matrix method was used. The process of the solution consisted of determining
the transformation matrices of the coordinate systems, the kinematic analysis of the industrial
robot and the graphical representation ofthe effector handling space. The analysis also
includes graphical representations of the kinematic properties of the mechanical system.
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VIIK 004.4
Hapuna I ponyosa
BATATOKOMIIOHEHTHI CUCTEMHU TA MOJAEJIOBAHHSA B MATLAB

Axmyanvnicme memu oocnioxycenns. Komn'tomepne mooenioganusa 3miHIOE MeMOOUKY HABYAHHA, CHOCIO MucienHs U
Moodcnugocmi 3acmocyeans. Lle donomaeae nepeiimu 6i0 308HiwHIX 00 GHYMPIWHIX 61acmugocmel i 8i0 IHOUBIOYanbHUX 00
36 'azanux enacmugocmeil. Po3pobka npodyxmy npuckoproemocs npogedeHHAM eKCnepuUMenmis i3 KOMN t1omepHoio MOOeLio.

Ilocmanoexa npoonemu. Kinemamuunuii ananiz ¢ Matlab i MSC Adams View. Mema nonseae 6 momy, wjob 0ociodicysa-
mu 06epmanHs OKpemMux elemenmie pooomu308aHoi cucmemu i GUSHAYUMU NPOCMOPOBULL PYX BUKOHABYHO20 OP2aMY.
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Ananiz ocmannix oocnioycens i nyonikayiu. MSC Adams npeocmasnse Ounamiuni cumyassmopu ipmyanbHux npomo-
munie mexaniunux cucmem. Bipmyanvni npomomunu 003601s10ms Mooeniogamu, aHanizyeamu i onmumizyeamu mauoymui
npooykmu i ueuamu ixui @1acmu8ocmi, nepui Hidc cmeoprogamu peanvhull npomomun. Lleil npuiiom nioxooums 0as po-
3pOOKU MIHIGMIOPHUX MEXAMPOHHUX eleMeHmMiB, d MAKOHC CKIAOHUX CUCTEM.

Buoinenns nedocnioxycenux uacmun 3a2anvhoi npodnemu. Bipmyansui npomomunu cmano8isimes coboio 8i0n08ioHuil
pecypc 0na mecmy8anHs npoyeoyp KOHMpPOIo i pe2ynio8aHHs.

Ilocmanogka 3aédannsa. Komninayis 8ipmyansho2o npomomuny MexaniyuHoi cucmemu, sKa Mae 6ci upiuianvHi ocoonu-
80Cmi i € CMABINLHOI 3 MOYKU 30pY 0OUUCTIEHD.

Buknao ocnosnozo mamepiany. Bipmyanena mooens — ye mamemamuyne npeocmasieHts CmpyKmyp peaisHo2o ceimy,
Wo 8ipMyanbHoO 8iOMEOPIOE 8CI 11020 i3UUHI 61ACMUBOCHIL.

Bucnoexu 6ionogiono 0o cmammi. Mema nonseana ¢ momy, wood SUHAUUMU KIHEMAMUYHI 81ACMUBOCTI, A MAKOHC
OYIHUMU 8NIUE NAPAMEMPIE Mexanizmy, AKi 6NIUBAIOMb Ha Yi KinemamuyHi eracmusocmi. bys suxopucmanuii mampuuruil
memoo. [Ipoyec piwenns ckiadascs 3 u3HAUeHHS MAMPUYyb NEPEemEOPenHs CUCEM KOOPOUHAM, KIHeMAMUYHO20 aHANi3y
NpoMUCTI08020 poboma i 2pagiuno2o npedcmagnents NPOCMopy MAHINYII0BAHHS BUKOHABYO20 HPUCIPOIO.

Knrouosi cnosa: sipmyanvua moolens, Giokpumuil KiHemamuunuil 1anyroe; poOOMuU308ana cucmema, npocpamue
MOO0eN08aHHS, BUKOHAGUUT NPUCIPILL;, MAMPUYl nepemeopeHHs.
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