TEXHIYHI HAYKH TA TEXHOJIOI'TI Ne 2(24), 2021
TECHNICAL SCIENCES AND TECHNOLOGIES

UDC 004.657
DOI: 10.25140/2411-5363-2021-2(24)-75-82

Igor Boyarshin, Anna Doroshenko, Pavlo Rehida

REQUEST BALANCING METHOD FOR INCREASING THEIR PROCESSING
EFFICIENCY WITH INFORMATION REPLICATION IN A DISTRIBUTED DATA
STORAGE SYSTEM

The article describes a new method of improving efficiency of the systems that deal with storage and providing access of
shared data of many users by utilizing replication. Existing methods of load balancing in data storage systems are described,
namely RR and WRR. A new method of request balancing among multiple data storage nodes is proposed, that is able to adjust
to input request stream intensity in real time and utilize disk space efficiently while doing so.

Keywords: load balancing; data replication; scheduling.

Fig.: 5. Table: 1. References: 7.

Urgency of the research. With increased popularity of remote computing and shared
access to remote data, the overall load on the data storage nodes that contain this data increases
accordingly. As a result, one way of improving the performance of the system as a whole is the
use of additional storage nodes that replicate the data to which shared access is desired. This
allows for distribution of user requests among these storage nodes, effectively increasing the
overall system processing rate. The problem of user request distribution is solved with the help
of a load balancer that employs a particular algorithm [1] in order to perform this distribution.
This article describes one such load balancing algorithm that can be used in systems with
multiple users and multiple date storage nodes.

Target setting. Load balancer acts as a single and main node that is responsible for the
reception of all user requests that arrive into the system and their subsequent distribution among
available data storage nodes, as well as solving the problem of optimal data placement among
these nodes that would result in the maximum request processing intensity by the system. At
the same time, as the amount of user data is substantial, a tradeoff between the total memory
used on the data storage nodes and the resulting request processing intensity must be found.
Efficient data placement among the storage nodes directly impacts the overall performance of
the system. That is why the goal of the load balancing algorithm proposed in this article is
twofold: on the one hand, to provide sufficient rate of user request processing, and on the other
hand, to minimize the total memory used on all data storage nodes.

Analysis of existing research and publications. There is a number of algorithms used
extensively that deal with efficient balancing of load in the system, namely Round Robin [2, 3] and
Weighted Round Robin [4], that are both essentially an improvement of FCFS. There is also some
research that concerns itself with different adaptations of Round Robin that additionally utilize
information about the actual performance of different nodes: one such algorithm is Weighted Least
Connections [5, 6]. Article [7] describes a modified load distribution planning prediction algorithm
that is an improvement over Round Robin cyclic planning algorithm.

The Round Robin algorithm at its core uses the notion of a time quota that is constant. The
algorithm allows the current process to run for exactly this time period, and if the process is unable
to finish during this time, then it is placed to the end of the queue. In the constant of a load balancer
the Round Robin algorithm chooses the storage node to assign a request to in a circular fashion and
subsequently, thus each storage node performs an equal amount of work on average.

The Weighted Round Robin algorithm works on the same principal as the Round Robin,
but it also considers the differences between the processed being executed. The processes are
assigned different weights, where a larger weight denotes that this process shall be given a
larger time quota to execute. This introduces the notion of process priority to the system. In the
context of load balancing, the Weighted Round Robin algorithm distributes the requests among
the storage nodes in such a way as to accomplish the same ratio of resulting processed request
count as the ratio of corresponding weight coefficients of the storage nodes.

© BospumH 1. 1., Topomenko A. FO., Perima I1. T'., 2021
75




Ne 2(24), 2021 TEXHIYHI HAYKH TA TEXHOJIOI'T
TECHNICAL SCIENCES AND TECHNOLOGIES

Uninvestigated parts of the general problem. Although there exist methods of load
distribution in systems with constant request processing intensity, the approaches to load
distribution for systems where the processing intensity can be varied and adjusted in real time
with accordance to the need are poorly investigated.

Article objective. The objective of the article is to describe a new load balancing algorithm
that is more optimal than known alternatives with regards to delivering a sufficiently high
request processing intensity of the system, while reaching the lowest possible total memory
consumption on all the data storage nodes. A detailed analysis of the performance of this
algorithm compared to similar algorithms is conducted.

General overview of the system. The system that is modelled is comprised of m users
ui..um that generate k requests qi..qx that arrive to the load balancer, which is responsible for
assigning them for processing to one of n data storage nodes si..sn. The general system
architecture is shown in Fig. 1.

b1b2 bl% o o

Load Balancer

% .%bz
Fl

Fig. 1. General system architecture

The system stores z projects B={bi..b,} that are shared between users. A project represents
a logical unit of data that the system operates with. Each project is stored on one or more data
storage nodes. Users access these projects by the means of requests Q — each request q; is an
act of accessing a particular project bjin order to work with it.

User model overview. Each user has a certain set of ¢ projects that the user will work with
P={p1..pc} that is a subset of all projects in the system: P — B. In order to create a more realistic
simulation model each user is assigned one of the following behavior strategy models:

1. Random strategy. The project for request is chosen at random from set P of this user
with equal probability of each project being selected.

2. Averaged sequential strategy. Each user works with each project from P for a particular
time, while maintaining equal pick rate in the long term. A current project p; as well as the
repetition count for this project r are chosen at random. The next r requests from this user will
be to project pi. After r requests new values for p;and r are generated.

3. Favorite project strategy. Each user has a favorite project px that is chosen at random
from projects set P of this user. Project for each request is chosen at random, but with
probability=0.7 the favorite project will be chosen.

4. Two favorite projects strategy. This strategy works the same way as the strategy with
one favorite project, but instead of one there are two favorite projects pxand pm, with probability
of either favorite project being selected equal to 0.35.

Data storage node overview. Each data storage node s stores a particular set of projects
Wi < P that can change over time. Storage node sy is capable of processing user request g if
and only if the project p; of this request is stored on this node: p; € Wh, and also provided that
this node is not busy processing another request at this time. Each node si has its own request
processing time Tn.

76



TEXHIYHI HAYKH TA TEXHOJIOI'TI Ne 2(24), 2021
TECHNICAL SCIENCES AND TECHNOLOGIES

In order to measure the total memory consumption of the system on all storage nodes a new
metric g is introduced. This metric is defined as the ratio between the total magnitude sum of
sets Wi, of all storage nodes and the total count of possible projects being stored in the system:

—_yn Wi
9 = Xi=1 ()’

Load balancer model overview. As an input the load balancer takes a Poisson stream with
intensity A of requests qi..qk. The responsibilities of the load balancer include the following:

- Temporary storage of incoming requests in an internal queue.

- Selection of node sy for the processing of request qito project pm from internal request
queue. This assumes that node sy, is free and contains data for project pm: pm € Wh.

- Making decision about replication. The term «replication» here means an act of additional
storing data for project pm on node sh, provided that this node did not contain data for this project
prior to replication: pm & Wh.

- Recording and storage of request processing statistics that is further used while making
decisions about replication.

The principal job of the load balancer is to find an optimal placement of projects set B among
data storage nodes S with potential replication in such a fashion as to reach a high enough processing
intensity of requests Q by the system to avoid its overloading, while at the same time minimizing
the total memory consumption on all data storage nodes S, which is directly proportional to the total
sum of powers of sets W of nodes S, and can be measured using metric g.

Proposed load balancer algorithm. In order to temporary store incoming requests an
internal queue is used that works in the following way: new requests are added to the end of the
queue, while search for requests to be assigned to nodes S is done from the start of the queue.
This way, maximum load of available data storage nodes is reached at each moment and also
the maximum waiting time in queue is reduced, because requests with higher waiting time are
located closer to the head of the queue, thus having a higher priority for assignment.

In order to make decision about replication the load balancer analyzes waiting time in queue to
all the projects. The load balancer makes the decision about replication and an additional storage of
project pm on node sy with current project set Wi if the following conditions are satisfied:

- Data storage node sn does not contain data for this project yet: pm & Wh.

- Last v waiting time deltas for project pm are greater than zero (which implies continuous
increase in waiting time in queue).

- The last replication for project pm happened more than v/2 requests to project pmago. This
condition is required to allow the system to react to the last change that happened (that manifests
itself in changes in waiting time) before (maybe) performing subsequent replication.

In order to select node s to replicate project pmto, a subset R of nodes that do not yet contain
data for project pmis constructed: Rc S: V1; € R: pm& WiofnoderiandV s; €S, si € R: pm €
Wi of node s;. If the resulting set is empty (R = @), then subsequent replication of this project is
not possible. Otherwise a node is selected from R: r; € R, that has the least value of metric
worktime, which is calculated using formula (1):

worktime(r;) = (amount of processed requests on node r;) * t;

The worktime metric for a node is defined as the product of the amount of requests processed
on that node and the time 7 it takes to process one request, and is a measure of total work done
on that node. This way, between two nodes with equal worktime, the faster node will have a
higher processed request count, as its T is smaller. Consequently, close values of worktime
signify approximately the same load of nodes. And so when performing a replication, the node
with least worktime value is selected.

77



Ne 2(24), 2021 TEXHIYHI HAYKH TA TEXHOJIOI'T
TECHNICAL SCIENCES AND TECHNOLOGIES

If request to project pm arrives into the system for the first time, and so there is no node s,
project set Wh of which contains project pm, then this project is registered in the system using
the same replication algorithm as described above.

System simulation. In order to determine the efficiency of the proposed load balancing
algorithm, a program for simulating the described system was created using the Rust
programming language. The system has been simulated with the following parameters:

- Total project count z=20;

- User count m=10;

- Data storage nodes count n=7 with their respective request processing times (in
milliseconds) T={31, 41, 71, 95, 121, 131, 262};

- Total request count to simulate k=2048;

- Amount of projects that every user is interested in c=8;

- Amount of waiting time in queue deltas upon which the decision about replication is
made v=6.

In order to define input request stream intensity A, the maximum possible input processing
intensity of the system p is introduced. The maximum possible input processing intensity of the
system is defined as the sum of all individual intensities of all the nodes:

=il = ?:1%-
L

For the simulation the value of input request intensity was set to A=0.85 * p, which means
that the input stream is a Poisson stream with intensity that comprises 85% of the maximum
possible input processing intensity of the system.

Based on the conducted simulation the graphics of waiting time in queue for the whole
system as well as for each project separately are constructed. Requests that led to replication
are denoted with vertical red lines. Graphics for the mentioned above simulation parameters for
waiting time in queue for the whole system as well as for the first project are depicted on figures
2 and 3, respectively.

The resulting value of total memory usage metric for this simulation was g=35/140=0.25.

Waiting times

Ll LM«‘L%M‘MW bl W-Fﬂ? el LA W b il i

Fig. 2. Request waiting time in queue for the whole system

Waiting times for project 0

Nas s N S e
N SN e z \/4/ ~A AN SV \mxr\Nj\ o

Fig. 3. Request waiting time in queue for the first project
As can be seen from the graphics, at first the waiting times vary significantly and are
substantial, but as the system performs the necessary replication and adjusts to the input
intensity, the values are stabilized and reduced, which implies that the input processing intensity
of the system reaches the input request intensity.

78



TEXHIYHI HAYKH TA TEXHOJIOI'TI Ne 2(24), 2021
TECHNICAL SCIENCES AND TECHNOLOGIES

As can be clearly seen from Fig. 3, the only replication for this project happened exactly
after v=6 subsequent increases of its waiting time in queue. This replication led to a significant
improvement in waiting time at once. It can also be seen that as there were no more v=6
subsequent increases in waiting time for this project, no more replication happened until the
end of the simulation.

Comparison of proposed algorithm with other. In order to estimate the effectiveness of the
proposed load balancer algorithm, it is tested against two other algorithms, namely Round Robin
and Weighted Round Robin. As these two algorithms do not perform any replication and work with
static values of request processing intensity, in order to be able to properly test them against the
proposed algorithm, the simulations for the two algorithms is performed with fixed values of
replication factor, which means that a fixed amount of replication is performed for them prior to the
beginning of the simulation. The replication factor is defined as the amount of replication of the
data for each project in the system as a whole. For example, the replication factor of 2 means that
there are exactly two replication of the data of each project on some two distinct nodes in the system.

The Round Robin algorithm selects the node to assign the next incoming request for a
particular project in a circular queue fashion among the nodes that contain data for this project.
The Weighted Round Robin algorithm works the same way as Round Robin, but instead of
uniform distribution of requests for each project among its data storage nodes, it does so in a
weighted fashion, where the respective weights are the values of request processing intensities
of each of the nodes.

The simulation results for different values of input request intensities for all three
algorithms, as well as for different replication factors for Round Robin and Weighted Round
Robin, are presented in table. The Bal denotes the proposed load balancer algorithm, the RR-2,
RR-3 and WRR-2, WRR-3 denote the Round Robin and Weighted Round Robin algorithms
with replication factors 2 and 3, respectively. For each of the algorithms the simulation is
conducted with different values of input request intensity. In order to evaluate the performance
of the algorithms the following metrics were selected: average waiting time in queue (denoted
as avg time) and total memory consumption ratio (the g metric). As the amount of projects in
the simulation z is equal 20, and the amount of data storage nodes 7 is equal 7, that means that
the values of g for Round Robin and Weighted Round Robin with different values of replication
factor are known beforehand and are constant.

Table — The simulation results

Av Av Av
2=0.25u time,gms g 2=0.51 time,gms G 2=0.75u time,gms g
Bal 8.0 24/140 12.7 28/140 27.5 41/140
RR-2 19.5 40/140 4273.5 40/140 21780.7 | 40/140
WRR-2 6.6 40/140 56.6 40/140 4947.5 40/140
RR-3 16.6 60/140 2191.8 60/140 39866.0 | 60/140
WRR-3 4.6 60/140 26.6 60/140 260.9 60/140
A=0.9u A=n
Bal 50.3 51/140 4423 61/140
RR-2 34181.7 40/140 41973.9 40/140
WRR-2 12384.0 | 40/140 32626.9 40/140
RR-3 39985.3 60/140 50843.5 60/140
WRR-3 6733.8 60/140 14507.2 60/140

As can be seen from the Table 1, for low input request intensity all the algorithms show
approximately the same value of average waiting time in queue, the minimum being reached
with the Weighed Round Robin algorithm with the maximum value of simulated replication
factor of 3. Despite the fact that the proposed algorithm shows slightly worse resulting values
of average waiting time in queue, it does so with almost twice as small replication factor,
compared to other algorithms.

79



Ne 2(24), 2021 TEXHIYHI HAYKH TA TEXHOJIOI'T
TECHNICAL SCIENCES AND TECHNOLOGIES

However, as the input request intensity is increased, the tendency is clear that the proposed
algorithm is able to reach significantly lower values of waiting time in queue, compared to other
algorithms, and it does so resulting in only marginally higher replication factor. As can be seen
from the table, due to the better placement of projects among the data storage nodes, the
proposed algorithm is able to reach a substantially better performance of the system as a whole,
and it does so in dynamically in real time, adjusting to the given input request intensity.

Significant reduction of average request waiting time in queue for the proposed algorithm
compared to others can be explained in the following way. While other algorithms have a fixed
sequence of nodes that they assign incoming requests to, even if they do so considering the
respective processing intensity of the nodes (WRR), the proposed algorithm makes decisions
about assignment in real time based on the current workload of the nodes, which in turn prevents
their excessive overloading as well as reduces their idle time.

In order to further investigate the features of the proposed algorithm, a simulation for it is
performed with the same input parameters, but with two small modification of the base
algorithm:

1. A simpler internal FIFO queue is used;

2. No replication is done.

The resulting waiting time in queue graphics are shown in figures 4 and 5, respectively.

Waiting times

000
000
, om0
4 5000
E
2 4000
20
2000
10004
o T T T
0 s00 100 1500 2000
Teuestia

Fig 4. Waiting time in queue with FIFO type of queue

M I H“ | J Ut! T h H

i
Wl
Fig 5. Waiting time in queue with no replication done

uuuuuuu

I
| L L Wl M‘

I !'i"

Il
i

As can be seen from Fig. 4, the use of FIFO queue clearly stabilizes the waiting time of
requests in queue, but the value itself continuously rises despite the large amount of replication
that the system does, and the resulting request processing intensity of the system is still not high
enough to process all the incoming requests, and thus the system is overloaded.

As can be seen from Fig. 5, the lack of replication leads to insufficient request processing
intensity of the system, and as a result, the value of waiting time in queue rises continuously.
Two distinct trends in waiting times can also be spotted: peaks values of waiting time, that
correspond to more popular projects, and somewhat lower values, that correspond to less
popular projects.

Conclusions. The article described and investigated a new method of increasing the
efficiency of systems for data storage and processing requests of many users using replication.
For this, a new load balancing algorithm was introduced, that distributes the incoming user
requests among data storage nodes, adjusting to the intensity of the incoming requests in real time
using replication in such a fashion as to reach an optimal disk utilization on data storage nodes.

80



TEXHIYHI HAYKH TA TEXHOJIOI'TI Ne 2(24), 2021
TECHNICAL SCIENCES AND TECHNOLOGIES

A simulation of the described load balancing algorithm was performed, as well as its
efficiency comparison with such of existing balancing algorithms, namely Round Robin and
Weighted Round Robin. The proposed algorithm showed similar performance and used less
disk space compared to other algorithms for low input request intensity, and significantly better
performance for high input request intensity with only marginally higher disk utilization.

The proposed load balancing algorithm can be used in systems with many users for
adjusting to input request intensity in real time in order to provide high efficiency and optimal
disk space usage.

References

1. Comparing Load Balancing Algorithms (n.d.). https://www.jscape.com/blog/load-balancing-
algorithms.

2. Hyytid, E., & Aalto, S. (2016). On Round-Robin routing with FCFS and LCFS scheduling.
Performance Evaluation, 97, 83-103.

3. [Ishwari, S.R., & Deepa, G. (2012). A priority based Round Robin CPU scheduling algorithm for
real time systems. International Journal of Innovations in Engineering and Technology (IJIET), 1(3), 11.

4. Wang, W., & Casale, G. (2014). Evaluating Weighted Round Robin load balancing for cloud
web services. Institute of Electrical and Electronics Engineers (IEEE), 393-400.

5. Choi, D., Chung, K.S., & Shon, J. (2010). An improvement on the weighted least-connection
scheduling algorithm for load balancing in web cluster systems. In Grid and distributed computing,
control and automation (pp. 127-134). Springer, Berlin, Heidelberg.

6. Singh, G., & Kaur, K. (2018). An improved weighted least connection scheduling algorithm for
load balancing in web cluster systems. International Research Journal of Engineering and Technology
(IRJET), 5(3), 6.

7. Khryshchenyuk, R.A. (2020). Modified method of load distribution in infocommunication
networks [Master’s thesis] [Khryshchenyuk Roman Andriyovych; Igor Sikorsky Kyiv Polytechnic
Institute].

VIIK 004.657
leop Bospwun, Anna /lopowenko, Ilasno Pezioa

CIIOCIb BATAHCYBAHHSA 3AITUTIB JJIA NIABAINEHHA E@EKTUBHOCTI
IX OBPOBKU HA OCHOBI 1YBJIOBAHHS IHOGOPMAIIIL
B PO3MOJIVIEHIN CUCTEMI 35EPITAHHSI JAHUX

3pocmannsa nonynsprocmi giodanenux obyucienb ma KONeKmuHo20 8iooaneno2o oocmyny 00 iH@opmayii npuzeooums
00 3HAUHO020 30iNbUIEHHA HABAHMADICEHHA HA 8Y31u 30epieants Oanux, wo 3abe3neuyioms 36epicanna yici ingopmayii. Ax
Hacniook, 00HUM 3i cnocobié NoKpawjeHHs NPOOYKMUBHOCHI CUCEMU € BUKOPUCMAHHS 000AMKOBUX 8Y31i6 30epicants OaHUX,
sKi dy6nioloms inghopmayito, 0o sikoi 8iobysacmucs KonekmugHul docmyn. Lle do3sonae po3dinumu 3anumu Kopucmyseauie
MIDIC OeKINbKOMA 8Y31amu, egeKmusHo 30LbUYIoUU 3a2aibHy [HMEHCUSHICMb X 06poOKU. 3anponoHosanuil ancopumm
pobomu banancy8anbHUKa HABAHMAdICEHHs 00360AE GUPIUUMU 3A0aty pO3N0OiNeHHs OaHUX MA 3aNUMie KOPUCIYBayie Midic
8y3namu 8 po3noodineniii cucmemi 30epieanHs OAHUXx.

3acanvnuil 06’ em Oanux Kopucmyeayis Ha 8y31ax i00aneno20 36epieants OaHUX ma KitbKicms 3anumie 00 HUX € 3HAUHUM,
Wo npu3eoouUms 00 3POCMAHHA HABAHMAdICeHHs Ha cucmemy. Tomy HeoOXiOHO 3Haimu HOGI ChOCOOU NIOBUWYEHMH
inmencugnocmi 06pobku 3anumie cucmemoro, bepyuu 00 ysazu 0OMedceHicmb OUCKOBO20 NPOCMOPY.

Hapasi icnyroms pobomu npuceaueni ananizy memooia po3nooilents HA8AHMAadICen s y cucmemi. ¥ nimepamypi onucani
maki Mmemoou, AKi WUpoKo suKopucmogyiomocs na npaxmuyi, sk Round Robin ma Weighted Round Robin, siki 0o3gonsitoms
binviu eghekmusHo po3nodinumu HaganmadiceHHsa y cucmemi. Taxkoolc ichyromes pobomu, AKi po32na0aioms yOOCKOHANCHI
sapianmu aneopummy Round Robin, axi epaxosyioms mexniuni xapakmepucmuxu ma npooyKmusHicmy cepsaepis, cepeo AKUX
maxkuti anzopumm, sik Weighted Least Connections.

Xoua icnytoms memoou po3noodineHHs HA8AHMAICEHHS 8 CUCIEMAaX 3i CIMANol0 iIHMEeHCUBHICMIO ONPAYIOBAHH 3anUMIG,
Memoou Onsd cucmem, 6 AKUX IHMEHCUBHICMb ONpaylo8anus mooice Oymu 3MiHeHa ONs NIONAWMYBAHHA 00 BXIOHOT
iHMeNCUBHOCMI 3aNUMI8 ) PeanbHOMY 4aci € MAN0 OOCTIONHCEHUMU.

Memoto docniddicenns € cmeopeHHs ONMUMAILHO20 aneopummy pobomu banancysarbhuxa, wo 0yoe 3abe3neuygamu
HeoOXIOHY IHMEHCUBHICMb ONPAYIOBAHHS 3ANUMIE CUCTNEMOTO, I NPU YbOMY 00CAAMU MIHIMATLHO MOJICTUBO20 BUKOPUCANHS
OUCK0B020 NPOCOPY HA 8V31AX 30epieaHHs OaHUX.

81



Ne 2(24), 2021 TEXHIYHI HAYKH TA TEXHOJIOI'T
TECHNICAL SCIENCES AND TECHNOLOGIES

Onucano memoo 6anancy8anHsa 3anumis misic 0exinbkoma 8y3namu 3depicanis 0aHux, AKull 3abe3neyye nionaumyeanis
nio iHmeHCcUsHicms HA0X00JICeHHs 3anumis y peanvHoMy yaci. IIpogedeno cumynayito pobomu cucmemu ma NOPiGHAHHSA 3
icnytouumu ancopummamu 6anancysanns RR ma WRR 3 pisnumu napamempamu, a maxkoodic ananiz pobomu cucmemu 3 080ma
Moougikayiamu 6a308020 aneopummy.

IIposedeno ananiz ma cumynayis pobomu 3anponoHOBAHO20 An2OPUMMY POOOMU DANAHCYB8ANbHUKA HABAHMAICCHHS MA
BUKOHAHO NOPIGHAHHA egheKMUSHOCMI 11020 pobOMU 3 THUUMU NOWUPEHUMU AN2OpUMMAamMu Oanancysanis. 3anponoHo8aHull
aneopumm nokazas OauU3bLKY 00 IHUUX aneOpUmMMie epexmusHicms pobomu i GUKOpUCMAG MeHute OUCKOBO20 NPOCMOPY ONisl
HU3bKOI THMEHCUBHOCMT NOMOKY GXIOHUX 3ANUMIG, MA 3HAYHO Kpauwyy eekmusHicms pobomu 0is 8UCOKOI THMEHCUBHOCTI
6XI0H020 NOMOKY 3 Jule 0eujo OinbUUM BUKOPUCMAHHAM OUCKOBO20 NPOCMOPY.

Kniouosi cnosa: 6anancysanms naganmaogicenisl; 0yonio8ants 0aHux, NiaHy8aHHsI.

Puc.: 5. Tabn.: 1. bién.: 7.

Boyarshin Igor — Student, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” (37
Pobedy Av., 03056 Kyiv, Ukraine).

Bosipmmn Irop IBanoBuu — crynent, HamioHamsHmil TexHidHME yHIBepcHTeT YKpaiHn «KuiBCHKHI MOMITEXHIUHMI
iHcTHTYT iMeHi Iropst Cikopeskoro» (mpoctr. Ilepemorn, 37, m. Kuis, 03056, Ykpaina).

E-mail: igor.boyarshin@gmail.com

ORCID: http://orcid.org/0000-0002-1727-5305

Doroshenko Anna — Student, Department of Computer Engineering, National Technical University of Ukraine “Igor
Sikorsky Kyiv Polytechnic Institute” (37 Pobedy Av., 03056 Kyiv, Ukraine).

Jopomenko Anna IOpiiBHa — crynentka, Hamiomaneumii Texmiunmii yHiBepcureT Ykpainum «KuiBcbkmit
noiTexHigHui iHCTUTYT iMeHi Iropst Cikopebkoro» (mpoct. Ilepemorn, 37, M. Kuis, 03056, Ykpaina).

E-mail: annadoroshenko03@gmail.com

ORCID: http://orcid.org/0000-0001-7023-1961

Rehida Pavlo — Assistant, Department of Computer Engineering, National Technical University of Ukraine “Igor
Sikorsky Kyiv Polytechnic Institute” (37 Pobedy Av., 03056 Kyiv, Ukraine).

Perina Ilasjo IennaniiioBny — acuctent, kadenpa oburcmoBanbHOl TexHIKY, HarioHaIBHII TeXHIYHMIA yHIBEpCHUTET
VYxpainu «KuiBcbkuii nomitexHigHmii inctuTyT iMeHi Iropst Cikopeskoroy (mpoctr. Ilepemorn, 37, M. Kuis, 03056, Ykpaina).
E-mail: pavel regida@gmail.com

ORCID: http://orcid.org/0000-0002-6591-7069

Scopus Author ID: 57202317133

Boyarshin I., Doroshenko A., Rehida P. (2021). Request balancing method for increasing their processing efficiency with information replica-
tion in a distributed data storage system. Technical sciences and technologies, (2(24)), 75-82.

82



