TEXHIYHI HAYKU TA TEXHOJIOT T Ne 3(41), 2025
TECHNICAL SCIENCES AND TECHNOLOGIES

DOI: https://doi.org/10.25140/2411-5363-2025-3(41)-40-45
UDC 621.8

Marek Sukop’, Rastislav Jurko?®

"Professor, Professor of the Department of Production Systems and Robotics
Technical University of Kosice, (Kosice, Slovakia)
E-mail: marek.sukop@tuke.sk. ORCID: https://orcid.org/0000-0001-7987-3557
ResearcherID: AAH-5495-2019. Scopus Author ID: 36615762200

2Engineering student of the Department of Production Systems and Robotics
Technical University of Kosice (Kosice, Slovakia)
E-mail: rastislav.jurko@student.tuke.sk

IMPLEMENTING COMPUTER VISION FOR A MOBILE ROBOT

This article focuses on the creation of a sample application that demonstrates the use of computer vision in mobile
robotics. This was accomplished using a Raspberry Pi and four types of tags. The goal was to prove that it's possible to create
a relatively simple and low-cost image processing solution that's applicable for use in mobile robotics. The article describes
the algorithms used as well as the implementation process on the hardware. In conclusion, the article outlines the results
achieved and provides recommendations for further research.

Keywords: mobile robot; image processing; cascade; Raspberry Pi.

Fig.: 5. References: 7.

Relevance of the research. Nowadays, at every step we encounter the requirement of con-
trolling the movement of mobile robots based on the recognition of its surroundings. There is a
requirement that the robot can recognize where it is in space at any time and also how the obsta-
cles in its surroundings are arranged. At the same time, there is a requirement for the lowest pos-
sible price of the hardware part of the robot. That is why it is necessary to optimize and implement
relatively complex algorithms into relatively cheap hardware platforms. A critical requirement is
then the real-time response after image processing, which needs to be addressed.

Problem statement. Real-time image processing on low-cost platforms is a challenge.
Since the image is mostly in a two-dimensional field (monochromatic), image processing algo-
rithms are forced to “run” through this field several times, which is computationally demanding.
Therefore, it is necessary to optimize and test simplified image processing algorithms and
thereby increase the speed of image processing despite reduced reliability.

Analysis of recent research and publications. Artificial intelligence is the ability of tech-
nological devices to perform tasks like human abilities, such as reasoning, creativity, planning,
and learning. Artificial intelligence systems can operate autonomously and adapt their behaviour
based on previous steps. Thanks to artificial intelligence, technical systems can distinguish the
surrounding environment and solve identified problems to achieve a specific goal. To do this, a
computer obtains data from various sensors, such as cameras, which are then processed and in-
terpreted. Image and video processing plays a significant role in the field of artificial intelli-
gence [2]. The main goal of the work was to prepare computer vision and self-object detection to
a functional phase suitable for demonstration, so that the subsequent implementation of the entire
solution into a mobile robot remains just a detail.

Uninvestigated parts of a common problem. In addition to research goals, the motivation
for creating an image processing application on the Raspberry Pi was also for educational purposes.
During the educational process, it is appropriate to show students how some image processing al-
gorithms work. It is also appropriate to show them a platform other than a PC and the performance
of algorithms running on a given platform. Also, the implementation of algorithms on different
platforms may differ. When testing the proposed application, students can also edit and change the
photos used in the cascade and thus test and verify the stability of the recognition algorithms.

© M. Sukop, R. Jurko, 2025
40

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 3(41), 2025
TECHNICAL SCIENCES AND TECHNOLOGIES

Research objective. The aim of the article was to run an optimized image recognition
algorithm (cascade classifier) for the recognition of four different images. Of course, the result
is not optimal, since the algorithm needs more samples. However, according to the computa-
tional complexity, it was not, and therefore the proposed algorithm was implemented with such
a few trained images that it was not too convenient to delay the evaluation.

The statement of basic materials. The Raspberry Pi is a platform that, thanks to its flexi-
bility and low cost, has become popular not only among teachers, students, and tech enthusiasts
but also among developers and even industrial companies [3]. Users can create their own appli-
cations and programs using various programming languages, such as Python, Java, C++, and
others. Of course, there are also many open-source projects available online that enable and help
users more easily create their own projects and programs. This platform is ideal for development
projects and IoT applications, such as smart homes, temperature and humidity measurement, pro-
cess automation, creating your own gaming consoles, or, as in the case of this thesis, reading road
signs using computer vision and evaluating the results. Overall, it can be said that the Raspberry
Pi is a great tool for development and experimentation, giving users the ability to create their own
projects and solve various problems using technology [1].

The first boot of a Raspberry Pi is completely different from other computers or mobile
phones. To function, the Raspberry Pi uses an operating system called Raspbian, which first
needs to be installed on an SD card that is then inserted into the hardware. Therefore, in addition
to the Raspberry Pi microcomputer itself, we will also need a helper computer with a Windows
or macOS operating system, which is only used for the initial installation, and an SD card. If a
user is familiar with the Linux OS, they will also enjoy Raspbian, as the Raspbian OS is based
on this platform. It is available in two versions: Lite and Pixel. The Lite version contains only
the basic components of the operating system and is controlled via a terminal window, i.e., a
text command line. This version is suitable as a small Linux server or for use without a monitor,
for example, to control logic in home automation and the like. The Pixel version includes a
graphical user interface (GUI), the tkinter library, and many pre-installed applications [4].

To solve the control and, more importantly, to utilize computer vision, a few key steps must
be completed:

Installation of the libraries (OpenCV), connecting the display and camera to the board,

Creating your own database to detect only the objects you need.

The OpenCV library was invented by Gary Bradsky in 1999. It is based on optimized
C/C++ code and supports Java and Python. OpenCV has more than 2,500 optimized algorithms,
including an extensive collection of computer vision and machine learning algorithms. With it,
it is easier to perform tasks that may seem complex at first glance, such as face identification
and recognition, object identification, classifying human actions in videos, tracking moving
objects, extracting 3D models of objects, and much more [5].

To create our own cascades, we used the Cascade Trainer GUI application [6] for this the-
sis. When creating a custom cascade with this application, it's crucial to prepare your materials
in advance. The first necessary step is to create a file containing two folders. The folder names
must be n and p. The content of these folders is essential for the detection to work correctly. In
the n folder, we place negative images—images we don't want to be detected. In our case, these
are houses, cars, trees, and roads (Fig. 1).

41

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 3(41), 2025
TECHNICAL SCIENCES AND TECHNOLOGIES

m—

4 5 11d 1200px-Road_in_ arduino bright-daylight-e bright-daylight-e concrete-roads-1

Norway nvlronment fove nvwonment fore
AIL
Nmgul q’

132 houses13 images (1 images IMG_20211023_16 IMG_20211023_ 16 IMG 20220921 16 IMG 20220921_16 IMG_20230320_10
031277-58ef9780 031277-58ef9780 9359484 custom- 4242 5105§ 1747
3df78cd3fc724e2 3df78cd3fc724e2 885a687ecded7ac
4 4f fd56a918dbc51f...
- - - R e &7
4 iy Vﬁ
= .
SN
IMG_20230320_10 IMG_20230320_10 IMG_20230320_10 IMG_20230320_10 north-shore-driv north-shore-driv stiahnut (1) stiahnut' (2) stiahnut (3) stiahnut the-difference-b
1826 1827 1938 1940 e-1c01bb249dd8 e-1c01bb249dd8 etween-trees-an
4324a062923d137 43a4a0629a3d137 d-shrubs-326980
c70c4 <70c4f 4-hero-a400009...

Fig. 1. Image file for negative detection [1]

The images placed in the folder named p are illustrative examples of STOP signs from vari-
ous angles, with different brightness values, and in some cases, we also used filters and rotation
(Fig. 2). The rule is that the more comparison images the file contains, the more accurate, faster,
more efficient, and more reliable the detection will be. The typical number of images needed for
the software to detect an object is in the hundreds to thousands. As you can see in the following
image, we used 32 images in our case. For simple detection, this number is sufficient, but it is not
100 % successful. Also, when working with a camera, external light always plays a crucial role,
as it drastically affects computer vision.

"FEFLELEF

IMG_8617 IMG_8618 IMG_8619 IMG_8620 IMG_8621 IMG_8621f IMG_8622 IMG_8623

' . % E ﬁ .b) r
IMG_8626 IMG_2626¢ IMG_8627 IMG_86270 IMG_8628 IMG 8629 IMG_8629f IMG_86290 IMG_8630 IMG_8631 IMG_8632
! ¥
z z " » ; | z . m
IMG_8632f IMG_8633 IMG_8634 IMG_8635 IMG_8636 IMG_8636 IMG_8637 IMG_86370 IMG_8638 IMG_8638f

Fig. 2. Image file for possitive detection [1]

A crucial detail when saving images for detection is their format. They must all have the same
resolution and aspect ratio. If this is not followed, the application will display an unidentifiable
error. In our case, we chose an aspect ratio of 1:1 and a resolution of 800x800 for all images.

Fig. 3. Tags ready for detection [1]

42

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 3(41), 2025
TECHNICAL SCIENCES AND TECHNOLOGIES

The entire procedure explained in this chapter was repeated four times, as the goal of this
thesis is to detect and create custom cascades for multiple road signs. In our case, these were
the road signs for “STOP”, “Yield”, “Speed limit 30 km/h”, and “End of speed limit” (Fig. 3).

The program, written in Python for this specific application, has 162 lines. The program-
ming was done continuously, and we progressively fine-tuned the details until we had a func-
tional program code. Flowchart diagram of the main part of the written code is on the Fig. 4.

@ ;
/éamera image acquisitio/

/ Image to memory /

Compare with cascade

A

count++

number of successful

detections in a row > 40

Successful detection

Fig. 4. Flowchart diagram of the main part of the code
In Fig. 5, all four detected tags are shown. The images also show the subsequent reaction,
meaning that if a speed limit sign is detected, the robot will brake (the rear brake lights can
be seen) etc.

43

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 3(41), 2025
TECHNICAL SCIENCES AND TECHNOLOGIES

Fig. 5. Tags detection and application reaction

Conclusions. The main goal of the article, which was to detect custom objects, was suc-
cessfully achieved, and its functionality was proven with the application that was created. The
next objective, which was beyond the scope of this thesis but would be a future requirement, is
to install this program into a service robot, create control using UART communication, receive
and send signals via GPIO pins, and build a functional service robot model.

When creating a custom database, various problems can arise, such as a lack of sample
images, incorrectly set resolution, and an unsuitable aspect ratio. To create a proper cascade
database, you need to follow certain rules. Within the cascade creation application, it's neces-
sary to set the constants appropriately so that the creation process isn't overly time-consuming
and inefficient. This thesis shows the exact procedure that proved to be the best alternative after
long processes of testing and fine-tuning.

The practical part also includes an introduction to the application, its appearance after
switching it on, and its functioning, so that the reader can form their own opinion about what is
behind the creation of such a functional result.

Acknowledgements
This article was created thanks to the VEGA project support: 1/0294/24 Research and de-
velopment of multi-robotic system with distributed intelligence in the cloud.

44

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 3(41), 2025
TECHNICAL SCIENCES AND TECHNOLOGIES

References

1. Jurko, R: (2023), Implementacia pocitacového videnia do riadenia mobilného robota. Technicka
Univerzita v KoSiciach, Strojnicka fakulta, Diploma work, 2023.

2. EuroparlTV. (2020, August 27). Artificial Intelligence: Definition and Use. European Parliament
[cit.2023-01-04]. Dostupné na internete: https://www.europarl.europa.eu/news/sk/headlines/society/
20200827STO85804/ umela-inteligencia-definicia-a-vyuzitie?at campaign=20234-Digital&at medium=
Google Ads&at_platform=Search&at creation=DSA&at goal=TR Gé&at audience=&at topic=Artifici
al_Intelligence&gclid=CjwKCAjwl60iBhA2EiwAuUwWZVi_CbL5gJipMIZ0skS5F Ye-7qRc86Vev
Fwpg07T7j-nZfwICONLPOhoCm2wQAvD BWE.

3. Raspberry Pi. (2023). Raspberry Pi Software [Computer software]. Retrieved January 10, 2023,
from https://www.raspberrypi.com/software.

4. Gendzo. (2018): Instalacia a prvé spustenie Raspberry Pi. [online], [cit.2023-02-06]. Dostupné
na internete: https://www.gendzo.sk/navody/instalacia-a-prve-spustenie-raspberry-pi/ [28. aprila 2023].

5. MyGreatLearning. (2022). OpenCV tutorial in Python. [online]. Dostupné na internete:
https://www.mygreatlearning.com/blog/opencv-tutorial-in-python/.

6. AHMADI, A.: Cascade Trainer GUI. [online]. Dostupné na internete: https://amin-ahmadi.
com/cascade-trainer-gui/

7. Hajduk, M., Sukop, M., & Haun, M. (2019). Cognitive multi-agent systems: Structures, strate-
gies and applications to mobile robotics and robosoccer. Springer Nature. https://doi.org/10.1007/978-
3-319-93685-7.

Otpumano 29.08.2025

VIIK621.8

Mapex Cykon', Pacmucnae IOpko®

lpodecop, mpodecop kadeapu BAPOGHUIUX CUCTEM i POGOTOTEXHIKH
Texuiunuii yHiBepcuret Kommmnue (Kommune, CnoBakist)
E-mail: marek.sukop@tuke.sk. ORCID: https://orcid.org/0000-0001-7987-3557
ResearcherID: AAH-5495-2019. Scopus Author ID: 36615762200

2CTyIeHT iHkeHEpHOTO (haKyIbTeTy Kadeapy BAPOOHUYMX CHCTEM i POGOTOTEXHIKH
Kommmpkuit rexuiuanit ynisepentet (Kommue, CoBakis)
E-mail: rastislav.jurko@student.tuke.sk

INEPEBIPKA 'TEOMETPUYHUX XAPAKTEPUCTUK POBOTA
3A TOIIOMOTI'OI0 JIABEPHOI'O IHTEP®EPOMETPA

Y ecmammi pozenadaemuvca po3podka npuknady 0okiadanus, 0eMOHCMPYE NPaKmMuiHe 3aCmocy8anHsa KOMN T0mepHo20
30py y cpepi mobinbHoi pobomomexuiku. B ocHosi npoexmy nexcums 00CmMynHa ma eKOHOMiuHA anapamua namgopma, wo
cknadaemocs 3 Raspberry Pi, 308niunboi kamepu ma cencoproeo oucniesi. Ocnogna ynKyis npospamu — po3nizHagants ma
00pOOKA HOMUPLOX PI3HUX MUNIE 00POX*CHIX 3HAKIE. OCHOBHOI0 MemOoI0 6YI0 008ECHU MONCIUBICIG CIMBOPEHHS 000 NPOC-
Mo20 ma Hedopo2o20 piuieHHs 01 06pOOKU 300padicenb, uwjo 6e3nocepedHbo 3ACMOCO8YEMbCA 00 NPOEKMIE MOOINbHOT pobo-
momexuiku. Badiciugoio momugayicio 0anoi pobomu cmano cmeopents nedazo2iuno2o cmeHod, NPUHAYEHO20 05l Mecmy-
6anHA Ma 6usueHHs NoOdionux anzopummis. Lleii cmeno € 6a308um OCEIMHIM [THCHMPYMEHMOM, HAOANYU CMyOeHmam
NPaKmMuyHy niameopmy Ona posyMiHHsA PYHOAMEHMATLHUX NPUHYUNIE 06POOKU 300paxcerb ma 6a308ux aieOpummis wmy-
Hozo inmenexmy. Ompumanuii 000amox i Memoooa02is, WO NeACUMb 8 1020 OCHOGI, 6Y0ymb UKOPUCTNOBYBAMUCS 01 MO20,
wob 0onomozmu cmyoenmam oceoimu yi CKIaoui memu 6 NPAKMUYHOMY, PealbHOMY KOHmeKcmi. Y cmammi 0oknaouo onu-
cani aneopummu ma HOKpOKOGUIL npoyec ix peanizayii Ha anapamHomy piei. Y cmammi Kopomko onucanuii ancopumm pos-
ni3HABAHHS OOPOIICHIX 3HAKIG, HAOUHO NPOLIIOCMPOBAHULL DIOK-CXEMOI0 O Kpaujo2o po3yminna. I[Ipoepamne 3abes3nevens
pospobnene na Python ons nnamepopm Raspberry Pi 3 suxopucmannsm nomyoicnux 6ioniomex, maxux sk Numpy i OpenCV,
SKI He0OXIiOHiI OJ1 BUKOHAHHA MOYHUX 00UUCTEHb | WUPOKO20 CheKmpa 3a80aHb 06pobku 300padicens. Kpim moeo, y cmammi
OnUCyeMuvCs npoyec Cmeoperts 6asu Oanux 306paxicenb ma ix nio2omoeKu, sAKi BUKOPUCMOBYIOMbCA K NO3UMUBHI abo Heea-
mueni 30ieu 01 aneopummy posnizuasanna. Y pasi nozumuenux 36i2ie 000amox HABYABCS PO3NIZHABAMU KOHKPEMHI 3HAKU,
sxmouaiouu sHax « Cmony, sHax «B'i30 3aboponenuiiy, 3nax «Maxcumansua weuoxicmes 30 km/200» ma 3nak «Kineyv obme-
JICeHHs WUOKOCMIY. V 3aKMIOUHUX po30inax cmammi 062080pIOIONMbCs QOCAZHYMI Pe3yabmamu, niomeepoXtCcyemucs yCniut-
HICb NPOEKMY 8 00CACHEHHI NOYAMKOBUX Yinell ma NponoHyiomvCa YiHHi pekomenoayii 01 Matoymuix 00CaioHceHs, Cnps-
MOBAHUX HA PO3UUPEHHA NOMOuHOi pobomu. 30Kpema, NponoHylombCsa 3ax00U W00 HIO8UUEeHHA NPOOYKMUBHOCMI
aneopummy ma po3uupents PisHoOMaHIMHOCMI pO3NIZHABAHUX CUCHEMOI0 00'cKmig.

Knrouogi cnosa: mobinvuuii pobom; 0o6pobka 30opasicens, kackao; Raspberry Pi.

Puc.: 5. bion.: 7.

Sukop M., Jurko R. (2025) Implementing computer vision for a mobile robot. Technical sciences and technologies, (3(41)), 40-45.
DOI: https://doi.org/10.25140/2411-5363-2025-3(41)-40-45.

45

