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ІНТЕЛЕКТУАЛЬНА СИСТЕМА СЦЕНАРНОГО МОДЕЛЮВАННЯ ОЦІНКИ 
ЗАХИЩЕНОСТІ ОБ’ЄКТІВ КРИТИЧНОЇ ІНФРАСТРУКТУРИ 

У статті представлено інтелектуальну систему моделювання сценаріїв оцінки захищеності об’єктів критич-
ної інфраструктури з використанням методів штучного інтелекту. Розроблено формалізовану модель сценарного 
аналізу, що поєднує машинне навчання, нечітку логіку та графові структури для відображення взаємозв’язків між 
активами, загрозами, уразливостями й контрзаходами. Система забезпечує автоматизовану генерацію сценаріїв ін-
цидентів із урахуванням часової динаміки ризику та може бути використана в центрах моніторингу безпеки й циф-
рових двійниках кіберзахисту. 
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Актуальність теми дослідження. Об’єкти критичної інфраструктури відіграють ви-
значальну роль у функціонуванні держави, забезпечуючи стабільність енергетичних, тра-
нспортних, комунікаційних та фінансових систем [6; 9; 12]. З огляду на зростання кількості 
складних цілеспрямованих кібератак, що уражають енергетичні компанії, транспортні ву-
зли та телекомунікаційні мережі, виникає нагальна потреба переходу від реактивних під-
ходів до проактивного сценарного моделювання стану захищеності [2-3; 10].  

Постановка проблеми. Проблема забезпечення належного рівня захищеності об’єктів 
критичної інфраструктури (ОКІ) набуває особливої актуальності в умовах зростання кілько-
сті цілеспрямованих кібератак, ускладнення їхньої структури та інтеграції шкідливих дій у 
промислові й енергетичні процеси [1-2; 6]. Традиційні методи оцінювання безпеки, перед-
бачені стандартами ISO/IEC 27005, NIST SP 800-30 чи OCTAVE, не відображають реальної 
динаміки ризиків, оскільки спираються на статичні експертні оцінки й не враховують часову 
змінність уразливостей, взаємозалежність активів і реакцію контрзаходів [7; 9]. Це призво-
дить до несвоєчасного оновлення профілю ризику, недостатньої адаптивності систем захи-
сту та втрати релевантності ухвалених рішень у кризових ситуаціях. 

Необхідність переходу до інтелектуальних методів аналізу зумовлена потребою в 
оперативному прогнозуванні стану захищеності ОКІ та побудові динамічних сценаріїв 
розвитку подій у разі реалізації загроз [1-5; 15]. Запровадження штучного інтелекту в 
процес оцінювання дозволяє відмовитися від жорстких детермінованих моделей на ко-
ристь адаптивних систем, здатних до самонавчання на основі історичних інцидентів і 
телеметричних даних [4; 8; 11]. Інтелектуальна система моделювання сценаріїв оцінки 
захищеності передбачає використання машинного навчання, нечіткої логіки та графових 
структур для відображення причинно-наслідкових зв’язків між активами, загрозами, ура-
зливостями й контрзаходами [5; 6; 8; 9; 11-12; 14-16], що забезпечує побудову інтегрова-
ної моделі ризику в часовому вимірі. 

Аналіз останніх досліджень і публікацій. У сучасній літературі спостерігається по-
силена увага до використання методів штучного інтелекту для оцінювання ризиків і забез-
печення захищеності об’єктів критичної інфраструктури. Так, у роботі [1] представлено 
AI-орієнтовану модель ідентифікації ризиків інфраструктурних проєктів, що використовує 
історичні дані для виявлення закономірностей ризикових факторів, однак запропонований 
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підхід не враховує багатокроковість сценаріїв та часову динаміку впливу загроз. У дослі-
дженні [2] проаналізовано застосування машинного навчання для прогнозування кіберри-
зиків у критичних інфраструктурах, із фокусом на детекції аномалій, проте без інтеграції 
графових моделей зв’язків між активами, уразливостями й контрзаходами. 

В огляді [3] висвітлено роль генеративного штучного інтелекту та великих мовних 
моделей у захисті критичних систем, визначено ключові виклики, пов’язані з надійністю, 
пояснюваністю та безпечністю моделей, але не запропоновано практичної реалізації сце-
нарного аналізу ризиків. У роботі [4] подано автономну AI-архітектуру для виявлення 
уразливостей і реагування на загрози в реальному часі, проте система має загальний ха-
рактер і не враховує сценарне прогнозування змін рівня ризику. 

Автори роботи [5] розглянули інтеграцію моделей машинного навчання у сфері на-
ціональної безпеки й критичної інфраструктури, проте не подали механізмів побудови 
сценаріїв чи оцінки ефективності контрзаходів у динамічному середовищі. 

Таким чином, проаналізовані праці свідчать про активний розвиток напрямів засто-
сування AI для прогнозування ризиків і виявлення аномалій у критичних системах, однак 
залишаються недостатньо опрацьованими питання інтегрованого сценарного моделю-
вання, графового представлення взаємозв’язків між загрозами, активами й контрзахо-
дами, а також забезпечення пояснюваності й адаптивного оновлення сценаріїв у режимі 
реального часу. Ці наукові прогалини визначають потребу у створенні комплексної інте-
лектуальної системи, що поєднає методи штучного інтелекту, сценарний аналіз і динамі-
чне управління ризиками для об’єктів критичної інфраструктури. 

Виділення недосліджених частин загальної проблеми. Попри наявність численних 
досліджень із питань оцінювання ризиків та захищеності об’єктів критичної інфраструк-
тури, низка аспектів залишається маловивченою. Більшість існуючих підходів є статичними 
й не враховують динамічну зміну стану систем, появу нових загроз та взаємозалежність між 
активами, уразливостями й контрзаходами. Недостатньо розроблені методи автоматизова-
ного формування сценаріїв розвитку інцидентів з урахуванням часової динаміки ризику та 
реального контексту подій. Недослідженою також залишається інтеграція штучного інтеле-
кту в процес моделювання оцінки захищеності, зокрема поєднання нейронних мереж, нечі-
ткої логіки та графових структур. Відсутність ефективних механізмів пояснюваного аналізу 
рішень ускладнює інтерпретацію результатів для експертів кіберзахисту. Крім того, бракує 
підходів до створення цифрових двійників, що дозволяли б симулювати сценарії атак і оці-
нювати ефективність контрзаходів. Отже, подальші дослідження мають бути спрямовані на 
розроблення інтелектуальної системи сценарного моделювання, здатної поєднати машинне 
навчання, нечітку логіку та механізм пояснюваного аналізу рішень для адаптивної оцінки 
захищеності й прогнозування ризиків у режимі реального часу. 

Мета дослідження. Метою дослідження є розроблення інтелектуальної системи сце-
нарного моделювання оцінки захищеності об’єктів критичної інфраструктури, яка на ос-
нові методів штучного інтелекту, машинного навчання, нечіткої логіки та графових стру-
ктур забезпечує автоматизоване формування сценаріїв розвитку інцидентів, 
прогнозування динаміки ризиків і визначення оптимальних контрзаходів для підвищення 
рівня кіберстійкості та адаптивності систем захисту. 

Виклад основного матеріалу. Побудова інтелектуальної системи сценарного моде-
лювання оцінки захищеності об’єктів критичної інфраструктури потребує формального 
опису її структури та взаємозв’язків між компонентами [6; 11; 16]. Для цього розроблено 
математичну модель, що поєднує методи машинного навчання, нечіткої логіки, графових 
структур і пояснюваного штучного інтелекту [8; 10]. Такий підхід забезпечує можливість 
виконання адаптивного аналізу ризику в динамічних умовах кіберзагроз, коли оцінка за-
хищеності має не лише статичний, а і прогностичний характер. 
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У межах цієї моделі кожен сценарій розглядається як формалізована структура, яка 
об’єднує активи, загрози, уразливості, контрзаходи та прогноз ризику, що дозволяє пе-
рейти до аналітичного опису процесів зміни рівня безпеки у часі [9; 12; 16].  

Формалізована модель сценарію описується шісткою: 
𝑆௜ = 〈𝐴௜ , 𝑇௜, 𝑉௜, 𝐶௜, 𝑅௜(𝑡), 𝑃௜〉,     (1) 

де   𝐴௜  множина активів системи; 
𝑇௜  множина загроз; 
𝑉௜  множина уразливостей; 
𝐶௜  набір контрзаходів; 
𝑅௜(𝑡)  значення ризику в момент часу 𝑡; 
𝑃௜  прогнозований сценарій розвитку події [6-8; 12].  
Таке формальне представлення дає змогу структурно пов’язати всі ключові компоненти 

системи безпеки в єдину модель, що описує не лише поточний стан, а і прогнозовану дина-
міку ризику. Воно забезпечує можливість інтеграції різнорідних факторів  технічних, орга-
нізаційних і поведінкових  у спільну аналітичну базу для подальшого моделювання сцена-
ріїв, виявлення критичних ланцюгів атак і формування оптимальних стратегій реагування. 

Ризик кожного сценарію обчислюється як: 
𝑅௜(𝑡) = 𝑃(𝑇௜ ∩ 𝑉௜) ∙ 𝐼(𝐴௜) ∙ (1 − 𝐸(𝐶௜)),   (2) 

де   𝑃(𝑇௜ ∩ 𝑉௜)  ймовірність реалізації загрози через конкретну уразливість; 
𝐼(𝐴௜)  критичність активу; 
𝐸(𝐶௜)  ефективність застосованих контрзаходів.  
Формула відображає багаторівневу взаємодію між елементами системи безпеки: за-

грозами, уразливостями та механізмами захисту. Коефіцієнт 𝐼(𝐴௜) підсилює внесок най-
критичніших активів, тоді як множник (1 − 𝐸(𝐶௜)) враховує ступінь зниження ризику 
завдяки наявним контролям [6; 14]. Таким чином, (2) дозволяє виконати кількісне оці-
нювання ризику в динамічній системі, відображаючи як ймовірність реалізації атаки, так 
і її потенційний вплив на бізнес-процеси. Цей вираз є основою для подальшої нормалі-
зації ризиків і побудови агрегованої системної оцінки. 

Для розділення складових ймовірності у (2) використовується декомпозиція: 
𝑃(𝑇௜ ∩ 𝑉௜) = 𝑃(𝑇௜|𝑉௜) ∙ 𝑃(𝑉௜),    (3) 

що дає змогу окремо оновлювати оцінки уразливостей і загроз  наприклад, на основі 
результатів сканування, телеметрії або аналітики SOC. Такий підхід спрощує адаптацію 
моделі до змін у середовищі безпеки, дозволяючи незалежно оновлювати параметри за-
гроз 𝑃(𝑇௜|𝑉௜) та уразливостей 𝑃(𝑉௜). Це особливо важливо для систем, що працюють у 
режимі реального часу, де частота виявлення нових уразливостей та появи атак постійно 
зростає [2-4; 8; 15]. Крім того, формула (3) забезпечує можливість інтеграції з байєсівсь-
кими або нечіткими моделями оцінки ризику, створюючи основу для побудови динамі-
чних сценаріїв розвитку інцидентів. 

Агрегована ефективність множини контрзаходів визначається як: 

𝐸(𝐶௜) = 1 − ∏ (1 − 𝜂௞𝑢௞), 0 ≤ 𝜂௞ , 𝑢௞ ≤ 1௞∈஼೔
,   (4) 

де   𝜂௞  питомий вплив (якість) контрзаходу 𝑘; 
𝑢௞  рівень його задіяння (активації) в системі захисту [7; 12; 14].  
Вираз описує інтегральний ефект множини незалежних контрзаходів, які спільно 

впливають на зменшення ризику реалізації загроз.  
Модель базується на принципі комплементарності, коли ефективність усієї системи 

зростає навіть при частковому підвищенні ефективності окремих контролів [15]. Якщо 
хоча б один контрзахід спрацьовує на 100 %, агрегована ефективність 𝐸(𝐶௜) наближа-
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ється до одиниці, що означає повне блокування ризику. Формула (4) узгоджується з рів-
нянням (2), адже підвищення 𝐸(𝐶௜) прямо зменшує величину ризику 𝑅௜(𝑡), забезпечуючи 
нелінійний кумулятивний ефект при додаванні додаткових механізмів захисту. 

Для порівняння різних сценаріїв використовується нормований показник: 

𝑅෠௜ =
ோ೔(௧)

ோ೘ೌೣ
, 𝑅෠௜ ∈ [0; 1],     (5) 

який характеризує відносний рівень ризику від повної стійкості (дорівнює 0) до критич-
ного стану (дорівнює 1). Такий підхід забезпечує уніфіковану шкалу для порівняння ста-
нів різних активів або сценаріїв, незалежно від їхньої абсолютної величини ризику [7; 9]. 
Нормалізація дозволяє оцінювати не лише поточний рівень загроз, але й відстежувати 
динаміку їх зміни в часі  наприклад, унаслідок появи нових уразливостей або впрова-
дження додаткових контрзаходів. Значення 𝑅෠௜, що наближається до 1, свідчить про кри-
тичну вразливість активу, тоді як показник, близький до 0, демонструє ефективність іс-
нуючих механізмів захисту. Таким чином, формула (5) створює основу для подальшої 
агрегації ризиків та оптимізації політики безпеки підприємства. 

Інтегральний системний ризик обчислюється як:  

𝑅௦௬௦(𝑡) = ∑ 𝑎௜௜ 𝑅෠௜(𝑡), 𝑎௜ ≥ 0, ∑ 𝑎௜ = 1௜ ,   (6) 

де 𝑎௜  вагові коефіцієнти пріоритетності активів або сценаріїв, що відображають їхню кри-
тичність у бізнес-процесах. Цей вираз узагальнює індивідуальні ризики 𝑅෠௜(𝑡), інтегруючи 
їх у єдину метрику, що характеризує поточний стан захищеності всієї системи. Коефіцієнти 
𝑎௜ можуть визначатися на основі важливості активів у виробничому циклі, рівня їх підклю-
чення до інших компонентів або наслідків потенційної компрометації [7; 9; 11-12]. Таким 
чином, формула (6) дозволяє перетворити множину локальних оцінок ризику на стратегіч-
ний показник, який використовується для ухвалення управлінських рішень, ранжування за-
гроз та формування політики пріоритетного захисту об’єктів критичної інфраструктури. 

Для валідації запропонованого підходу проведено порівняння з трьома орієнтирами: 
статичним ризик-скорингом, моделлю з фіксованим порогом спрацювання та класичними 
алгоритмами машинного навчання, що не враховують графові зв’язки між активами, загро-
зами й контрзаходами. Ефективність системи оцінювалася за сукупністю кількісних мет-
рик  MAE, RMSE, 𝑅ଶ, ROC-AUC, PR-AUC, F1, а також за середнім часом виявлення, ча-
стотою хибних спрацьовувань і затримкою чи пропускною здатністю в режимі реального 
часу. Такий комплекс показників забезпечує всебічну оцінку якості функціонування сис-
теми, охоплюючи точність прогнозування, своєчасність реагування та операційну ефекти-
вність в умовах динамічних кіберзагроз. Конфігурація моделей, включно з вікном спосте-
реження, розміром рекурентних шарів, швидкістю навчання та пакетом обробки, 
зафіксована у внутрішньому профілі налаштувань і може бути відтворена відповідно до 
описаної послідовності етапів. Час тренування та інференсу контролювався з метою забез-
печення інтеграції системи в потоки обробки даних, наближені до реального часу, що га-
рантує її практичну придатність у середовищах оперативного моніторингу безпеки. 

Для візуалізації взаємозв’язків між елементами системи формується орієнтований 
граф ризику: 

𝐺 = (𝑁, 𝐸),     (7) 

де 𝑁 = {𝐴, 𝑇, 𝑉, 𝐶}  множина вузлів (активи, загрози, уразливості, контрзаходи), 𝐸 =
{(𝑇, 𝑉), (𝑉, 𝐴), (𝐶, 𝑉)}  множина орієнтованих зв’язків між ними. Такий граф відображає 
структуру взаємозалежностей між об’єктами критичної інфраструктури та дозволяє по-
будувати причинно-наслідкові ланцюги поширення ризику [6; 9; 16]. Кожне ребро вказує 
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напрям впливу  від загрози до уразливості, від уразливості до активу або від контрза-
ходу до уразливості, що дозволяє відстежувати як еволюцію потенційних атак, так і 
ефект застосованих захисних заходів. У такий спосіб граф 𝐺 є базовою структурою для 
подальшого обчислення показників критичності та моделювання ланцюгових атак, за-
безпечуючи наочне представлення ризикових взаємозв’язків у системі. 

Сумарна критичність системи розраховується як: 

𝐾(𝐺) = ∑ 𝑤௜௝ ∙(௜,௝)∈ா 𝑅௝,    (8) 

де   𝑤௜௝ – вага ребра, що визначає силу впливу між двома елементами графа; 
𝑅௝  ризик, асоційований із вузлом 𝑗.  
Формула (8) дозволяє оцінити загальний вплив взаємозалежностей між компонен-

тами системи безпеки, враховуючи як силу зв’язків між елементами, так і величину ін-
дивідуального ризику [11]. Якщо у системі існують вузли з високим рівнем ризику, що 
мають велику кількість зв’язків або високу вагу 𝑤௜௝, їхній внесок у сумарну критичність 
𝐾(𝐺) буде значним. Таким чином, рівняння (8) допомагає визначати вузли, які є «вузь-
кими місцями» безпеки  тобто ті елементи, через які ризик найшвидше поширюється 
мережею, що робить їх пріоритетними для захисту та моніторингу. 

Для аналізу складних багатокрокових або «ланцюгових» атак використовується по-
казник ризику уздовж шляху: 

𝑅௣ = (∏ 𝑤௨௩) ∙ 𝐼(𝐴௘௡ௗ), 𝑝: шлях у (௨→௩)∈௣ 𝐺,    (9) 

де добуток ваг 𝑤௨௩ відображає сукупну проникність між вузлами графа вздовж шляху 
атак   𝑝; 

𝐼(𝐴௘௡ௗ)  критичність кінцевого активу, до якого веде цей шлях.  
Формула (9) дозволяє змоделювати каскадне поширення атаки через послідовні за-

лежності між вразливими компонентами системи. Якщо хоча б одна ланка шляху має 
низьку проникність (малий 𝑤௨௩), то загальний ризик 𝑅௣ істотно зменшується, що узго-
джується з логікою багаторівневого захисту [10]. У контексті графової моделі це дає 
змогу не лише оцінити ризик окремих вузлів, а й визначити критичні шляхи поширення 
загроз, які становлять найбільшу небезпеку для об’єкта критичної інфраструктури [5; 
13]. Таким чином, показник 𝑅௣ використовується для кількісного аналізу каскадних ефе-
ктів та оцінювання потенційного впливу складних атакових ланцюгів у системі.  

Еволюція ризику у графі описується динамічним рівнянням: 

𝑟௧ାଵ = 𝜎(𝒜௧𝑟௧ + 𝑏 − 𝑇𝑒௧),    (10) 

де    𝑟௧  вектор вузлових ризиків у момент часу 𝑡; 
𝒜௧  матриця ваг зв’язків між вузлами графа (активами, загрозами, уразливостями); 
𝑒௧  вектор ефективностей активних контрзаходів; 
𝑇  діагональна матриця сили їхнього впливу; 
𝜎(∙)  нелінійна стискуюча функція, наприклад логістична.  
Рівняння описує, як ризик на кожному вузлі графа змінюється під впливом взаємодій 

між елементами системи та дією захисних механізмів. Доданок 𝒜௧𝑟௧ моделює передачу 
ризику між вузлами (наприклад, коли компрометація одного активу впливає на інші), а 
термін 𝑇𝑒௧ зменшує загальний ризик залежно від ефективності активних контрзаходів. 
Нелінійна функція 𝜎(∙) обмежує значення ризику у допустимому діапазоні [0,1], що за-
безпечує стабільність моделі та запобігає її розходженню при моделюванні довготрива-
лих сценаріїв [15, 16]. Таким чином, формула (10) формалізує динамічну поведінку сис-
теми ризиків у часі, узгоджуючи її з попередніми співвідношеннями (7)-(9) і створюючи 
основу для прогнозного керування захищеністю об’єктів критичної інфраструктури. 
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Графік на рис. 1 відображає зміну рівня ризику 𝑟௧ для п’яти вузлів системи у часі 
відповідно до рекурентної моделі 𝑟௧ାଵ = 𝜎(𝒜௧𝑟௧ + 𝑏 − 𝑇𝑒௧). Взаємодія між вузлами ви-
значається матрицею впливів 𝒜௧, а ефективність контрзаходів  матрицею 𝑇. Криві по-
казують, як ризик стабілізується після початкових коливань, демонструючи різні швид-
кості затухання залежно від локальної структури взаємодій та впливу параметра 𝜎. 

 
Рис. 1. Динаміка ризику у часі для вузлів графа 

Джерело: розроблено автором. 

Архітектура системи реалізована у вигляді трирівневої моделі, де кожен рівень ви-
конує власні функції та взаємодіє з іншими через чітко визначені інтерфейси потоків да-
них, представлених на рис. 2. 

 
Рис. 2. Схема потоків даних інтелектуальної системи сценарного моделювання  

оцінки захищеності об’єктів критичної інфраструктури 
Джерело: розроблено автором. 

Data Layer забезпечує первинну обробку інформаційних потоків, які надходять із рі-
зних джерел  журналів подій безпеки (SIEM), результатів сканування уразливостей, си-
стем моніторингу інфраструктури (ICS/SCADA), мережевої телеметрії та логів хостових 
агентів [14]. На цьому рівні здійснюється збирання, уніфікація, очищення та нормаліза-
ція даних за допомогою механізмів ETL (Extract–Transform–Load). Усі події зберігаються 
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у сховищі типу Data Lake або Time Series Database, що дозволяє виконувати як ретроспе-
ктивний, так і потоковий аналіз. Data Layer також відповідає за синхронізацію даних у 
реальному часі, їхню категоризацію за типами загроз і уразливостей та передає нормалі-
зовані ознаки безпеки до рівня штучного інтелекту. AI Layer виконує аналітичну та про-
гнозну функції, використовуючи моделі машинного навчання, нечіткої логіки та поясню-
ваного штучного інтелекту для оцінки поточного й майбутнього рівня ризику [5; 8; 15]. 
На цьому рівні здійснюється побудова часових прогнозів, визначення ймовірності реалі-
зації загроз і формування рекомендацій щодо пріоритетності контрзаходів. Отримані ре-
зультати передаються до Decision Layer, який інтегрує аналітичні висновки в систему 
підтримки рішень, забезпечуючи автоматизоване реагування, оптимізацію ресурсів і фо-
рмування сценаріїв реагування в межах SOC/SIEM/SOAR. 

Потоки починаються з джерел подій (SIEM, сканери, телеметрія), звідки журнали та ме-
трики надходять до модуля ETL/Нормалізація, де здійснюється очищення, уніфікація та пе-
редавання даних у сховище Data Lake / TSDB [9]. AI Layer виконує основну аналітичну й 
прогнозну функцію системи. Його ядром є нейронна мережа LSTM, яка аналізує часові ряди 
даних і визначає прогнозований рівень ризику 𝑅௜(𝑡 + ∆𝑡) для кожного активу або сценарію.  

Паралельно працює модуль нечіткої логіки (Fuzzy Logic Module), що опрацьовує екс-
пертні або напівавтоматичні оцінки параметрів безпеки  наприклад, рівень критичності 
активів, імовірність реалізації загроз, ефективність контрзаходів  і переводить ці оцінки 
у числову форму через механізми фазифікації, агрегації та дефазифікації. Додатково вбу-
дований Explainable Artificial Intelligence (XAI) модуль інтерпретує результати прогнозу, 
пояснюючи, які вхідні фактори найбільше вплинули на оцінку ризику. 

Для цього використовуються методи SHAP, LIME та аналітика важливості ознак, що пі-
двищує довіру до результатів і спрощує їх використання аналітиками центрів моніторингу 
безпеки. Таким чином, AI Layer виконує роль інтелектуального ядра, яке перетворює масиви 
сирих даних у прогнозні оцінки та пояснення для прийняття рішень. Decision Layer є рівнем 
взаємодії з користувачем і відповідає за інтеграцію результатів аналітики у процес управ-
ління безпекою [16]. На цьому етапі система виконує візуалізацію графа ризику (7), що де-
монструє зв’язки між активами, загрозами, уразливостями та контрзаходами [15]. Граф відо-
бражає не лише поточний стан безпеки, але й динаміку зміни ризиків у часі. У модулі 
аналітики здійснюється оцінка трендів ризику, порівняння сценаріїв, побудова heatmap-карт 
критичності та ранжування активів за ступенем уразливості. Результати автоматично пере-
даються до SOAR-компонента (Security Orchestration, Automation and Response), який фор-
мує рекомендації або плейбуки дій, оптимізуючи порядок реагування на інциденти з ураху-
ванням доступного бюджету та ресурсів [6; 10]. Отже, Decision Layer замикає цикл 
управління  від збору даних до реалізації автоматизованих контрзаходів. 

Отже, модуль нечіткої логіки забезпечує обробку невизначеностей і наближених оці-
нок, дозволяючи системі працювати навіть за неповних або суперечливих даних. Його 
поєднання з XAI-модулем створює прозорий механізм прийняття рішень, у якому кожне 
прогнозоване значення ризику може бути обґрунтовано на рівні факторного внеску. Та-
кий підхід підвищує довіру аналітиків до результатів моделювання та спрощує аудит дій 
системи у контексті стандартів безпеки. У комплексі ці модулі формують когнітивне ядро 
AI-рівня, що забезпечує пояснюваність, адаптивність і стійкість оцінки ризику в динамі-
чному середовищі загроз. 

Взаємодія між трьома рівнями здійснюється за принципом безперервного циклу: 
Data Layer постачає актуальні дані, AI Layer генерує прогноз і пояснення, а Decision Layer 
забезпечує прийняття рішень, результати яких повертаються у вигляді нових даних і три-
герів для корекції моделі [8; 14]. Така архітектура підтримує адаптивність, масштабова-
ність і самонавчання системи, що є критично важливим для захисту об’єктів критичної 
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інфраструктури в умовах динамічних кіберзагроз. Завдяки модульній побудові забезпе-
чується можливість гнучкого оновлення окремих компонентів без переривання роботи 
всієї системи. AI-модуль виконує прогнозування на основі часових рядів та формує по-
яснювані рекомендації для оператора, що підвищує прозорість процесу прийняття рі-
шень. Decision Layer інтегрується з SOC/SIEM-платформами, автоматизуючи реагування 
та корекцію політик безпеки в реальному часі. Зворотний зв’язок між рівнями гарантує 
поступове вдосконалення моделі на основі накопиченого досвіду та змін у середовищі 
загроз, формуючи основу для інтелектуального управління ризиками. 

На рис. 3 показано, як архітектура реалізує узгоджений потік даних між трьома рівнями, 
де кожен елемент виконує власну роль у формуванні цілісного контуру управління ризиками.  

 
Рис. 3. Трирівнева архітектура інтелектуальної системи сценарного моделювання 

Джерело: розроблено автором. 

У центрі зображено три логічні шари системи  Data, AI та Decision, які об’єднані 
пунктирними лініями, що символізують обмін інформацією в режимі реального часу. Лі-
воруч показано вхідні джерела подій (журнали, телеметрія, результати сканувань), пра-
воруч  результати аналізу, зокрема граф ризику, прогнозовані значення та рекомендації 
для реагування [5; 17]. Діаграма наочно демонструє, що система функціонує як замкну-
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тий аналітичний контур, у якому результати прогнозів і рекомендацій Decision Layer мо-
жуть повторно впливати на Data Layer, формуючи механізм самонавчання та адаптації 
до змін у середовищі загроз. 

Процес сценарного моделювання реалізується в кілька етапів: збір і попередня обро-
бка даних 𝐷௧, визначення критичних активів і уразливостей, побудова прогнозної моделі 
за допомогою функції [2; 6]: 

𝑅௜(𝑡 + ∆𝑡) = 𝑓ఏ(𝐷௧, 𝐴௜ , 𝑇௜, 𝑉௜),    (11) 

де 𝑓ఏ  параметризована нейромережа, навчена на даних 𝐷௧. Вона враховує історичні 
залежності, взаємодії активів і поточні загрози, формуючи прогноз ризику для майбут-
нього моменту часу 𝑡 + ∆𝑡. Завдяки використанню рекурентної структури (зокрема, 
LSTM або GRU-блоків) модель здатна відстежувати довготривалі залежності у поведінці 
системи безпеки та виявляти приховані тренди у зміні ризикових показників [5; 8; 15]. 
Такий підхід забезпечує не лише кількісне прогнозування, а й виявлення закономірнос-
тей, що передують виникненню критичних інцидентів, створюючи основу для проакти-
вного реагування в межах системи кіберзахисту. 

Ймовірнісний характер прогнозу подається як [15]: 

𝑅௜(𝑡 + ∆𝑡)~𝒩(𝜇௜, 𝜎௜
ଶ), 𝜇௜ = 𝑓ఏ(𝐷௧, 𝐴௜, 𝑇௜ , 𝑉௜), 𝜎௜

ଶ = 𝑔ఏ(𝐷௧, 𝐴௜ , 𝑇௜ , 𝑉௜), (12) 

де функція 𝑔ఏ повертає дисперсію невизначеності прогнозу. Це забезпечує оцінку довіри 
до прогнозованого ризику та використовується далі для адаптивного налаштування по-
рогів реагування. Крім того, значення 𝜇௜ відображає очікуваний рівень ризику для активу 
в майбутній момент часу, тоді як 𝜎௜

ଶ характеризує ступінь коливань або нестабільності 
середовища [3; 10]. Такий підхід дозволяє системі розрізняти стабільні сценарії від по-
тенційно небезпечних, коли зростає дисперсія прогнозу, що є індикатором підвищеної 
невизначеності або появи нових типів загроз. 

Оцінка умовної ймовірності загрози оновлюється за правилом Байєса: 

𝑃௧(  𝑇௜| 𝑉௜) =
ℒ൫𝐸௧ห𝑇௜, 𝑉௜൯ ௉೟షభ(்೔| ௏೔)

௓೟
,    (13) 

де   ℒ  правдоподібність отриманих свідчень 𝐸௧; 
𝑍௧  нормувальний коефіцієнт [11; 13].  
Цей механізм дозволяє системі адаптивно оновлювати ризиковий профіль у реальному 

часі. Оновлення за правилом Байєса забезпечує динамічне врахування нових подій і сигналів 
телеметрії без необхідності повного перенавчання моделі. Це дозволяє системі коригувати 
поточні оцінки загроз при надходженні нових індикаторів компрометації або зміні контексту 
середовища [10; 15]. Таким чином, модель підтримує безперервну адаптацію до мінливих 
умов кіберзагроз, зберігаючи актуальність прогнозів ризику в реальному часі. 

Для навчання моделі використовується функція втрат: 

𝐿 =
ଵ

௡
∑ ൫𝑅௜

௧௥௨௘ − 𝑅௜
௣௥௘ௗ

൯
ଶ௡

௜ୀଵ ,    (14) 

яка мінімізує похибку прогнозу. Додатково проводиться моніторинг метрик MAE, RMSE 
та коефіцієнта детермінації 𝑅ଶ для оцінки точності передбачень на валідаційних вибір-
ках. Для підвищення збіжності процесу оптимізації застосовуються адаптивні алгоритми 
градієнтного спуску, такі як Adam і RMSProp, а також регулярне перезапускання нав-
чання з випадковою ініціалізацією ваг [14]. Валідаційні тести виконуються на основі си-
нтетичних і реальних SOC-логів, що забезпечує перевірку узагальнювальної здатності 
моделі на різних сценаріях кіберзагроз. 

Для підвищення стабільності додано регуляризацію Тихонова: 

𝐿௧௢௧௔௟ = 𝐿 + 𝜆‖𝜃‖ଶ
ଶ,     (15) 

що запобігає перенавчанню та стабілізує параметри моделі [8]. Додатково під час нав-
чання застосовувались крос-валідація k-fold і раннє зупинення за метрикою валідаційної 
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похибки з адаптивним зменшенням швидкості навчання. Гіперпараметри моделі добира-
лися методом байєсівської оптимізації, а ознаки проходили нормування та регулярний 
контроль на мультиколінеарність [6; 11; 17]. Для підвищення стійкості використовували 
балансування класів/ваги втрат для рідкісних інцидентів, обрізання градієнтів і калібру-
вання ймовірностей (temperature scaling) для коректної інтерпретації ризику. 

На етапі ухвалення рішень система виконує оптимізацію контрзаходів за обмеже-
ного бюджету: 

min
௫∈{଴,ଵ}೘

𝑅௦௬௦
/

(𝑡) = ∑ 𝑎௜𝑅෠௜
/
(𝑡)௜    𝑠. 𝑡.   ∑ 𝑐௞

௡
௜ୀଵ 𝑥௞ ≤ 𝐵,  (16) 

де   𝑎௜  вагові коефіцієнти, що відображають важливість активу або сценарію; 
𝑅෠௜

/
(𝑡)  оновлений нормований ризик після застосування обраних заходів; 

𝑐௞  вартість реалізації кожного контрзаходу; 
𝐵  загальний бюджет, який не можна перевищити; 
 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௠)  бінарний вектор вибору контрзаходів. 
Нові значення ризику 𝑅෠௜

/
(𝑡) визначаються через ефективність контрзаходів 𝐸(𝐶௜ ∪

{𝑘 ∶  𝑥௞ = 1}). Таким чином, завдання (16) формалізує процес мінімізації залишкового 
ризику за наявних ресурсів і реалізується на рівні Decision Layer.  

Для задачі мінімізації залишкового ризику за бюджетних обмежень використано детер-
мінований розв’язувач з евристичним теплим стартом; при зростанні розмірності застосову-
ється жадібна стратегія наближення з гарантованою зупинкою за часом. Такий підхід забез-
печує стабільний компроміс між якістю рішень і часовими вимогами SOC-процесів. 

Діаграма на рис. 4 ілюструє компроміс між залишковим ризиком 𝑅௦௬௦
/

(𝑡) та вартістю 
реалізації контрзаходів 𝐵. Кожна точка відповідає можливому набору рішень 𝑥 у задачі 
оптимізації, де мінімізується ризик за обмеженого бюджету. Виділена «робоча точка» ві-
дображає оптимальний баланс між ефективністю та витратами, що визначає доцільну 
стратегію реалізації заходів безпеки в системі критичної інфраструктури. 

 
Рис. 4. Парето-фронт «ризик ↓ – вартість ↑» для сімейства рішень 𝑥 

Джерело: розроблено автором. 

Після оптимізації система визначає адаптивні пороги спрацьовування: 

𝜏௜ = 𝜏଴ + 𝛽𝜎௜ , спрацьовування, якщо   𝑅௜(𝑡) ≥ 𝜏௜  ,   (17) 

де   𝜏଴  базовий рівень порогу; 
𝛽  коефіцієнт чутливості системи до невизначеності; 
𝜎௜  невизначеність прогнозу [8].  
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Підвищення порогу при великій дисперсії дозволяє знизити кількість хибних спра-
цьовувань SOC/AI-модуля [12-13, 15]. Таким чином, послідовність формул (1) - (17) опи-
сує цілісний цикл функціонування інтелектуальної системи: від формалізації ризику та 
графового моделювання до прогнозування, оптимізації контрзаходів і адаптивного реа-
гування. Це забезпечує самоналаштовність та підвищує ефективність захисту об’єктів 
критичної інфраструктури в умовах динамічних кіберзагроз. 

На рис. 5 (а) показано залежність між бюджетом 𝐵 та залишковим системним ризи-
ком 𝑅௦௬௦

/
(𝑡): із зростанням бюджету ризик зменшується, а позначені точки 𝑥(௜) відобра-

жають оптимальні набори контрзаходів у межах ресурсних обмежень. На рис. 5 (б) зо-
бражено вплив параметра масштабування порогу 𝛽 на ймовірності хибних (FPR) і 
правильних (TPR) спрацьовувань при формулі 𝜏௜ = 𝜏଴ + 𝛽𝜎௜ .  Зі зростанням 𝛽 зменшу-
ється кількість хибних спрацьовувань, що демонструє адаптивність порогів реагування 
в AI-модулі оцінки ризику. 

 
Рис. 5. Компроміс «бюджет-ризик» та вплив β на пороги реагування 

Джерело: розроблено автором. 

Розроблена система може бути інтегрована в наявну інфраструктуру центрів моніто-
рингу безпеки (SOC) через стандартні канали обміну даними з SIEM-платформами, схо-
вищами часових рядів (TSDB) та системами SOAR для автоматизації реагування. Інтеле-
ктуальні модулі формують аналітичні звіти, алерти та рекомендації з узгодженим SLA-
часом реагування. Архітектура підтримує поетапне впровадження без зупинки поточних 
бізнес-процесів, що дає змогу поступово розширювати функціонал системи та підвищу-
вати рівень кіберстійкості підприємства. 

У процесі розроблення враховувались можливі обмеження моделі, зокрема дисбаланс 
класів подій, дрейф концепції у часових рядах і шум сенсорних даних. Для пом’якшення 
цих факторів застосовувалося ребалансування вибірок, моніторинг дрейфу з автоматич-
ними тригерами перенавчання та перевірки консистентності ознак під час оновлення да-
них. Основним обмеженням є відсутність публічних сирих даних, однак подані процедурні 
описи достатні для відтворення результатів на будь-яких сумісних журналах безпеки. 

Усі журнали подій, використані для тестування, проходили етап анонімізації та агре-
гування, що виключає можливість ідентифікації реальних об’єктів або користувачів. До-
ступ до даних регламентовано ролями з багаторівневою автентифікацією. Передбачено 
аудит рішень штучного інтелекту й захист від отруєння даних (data poisoning) через пе-
ревірку джерел і ізоляцію підозрілих потоків, що забезпечує прозорість та надійність фу-
нкціонування системи. 
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Отримані результати підтвердили, що запропонована система забезпечує автоматизо-
вану генерацію сценаріїв, динамічне оновлення ризикових профілів і пояснюваність ре-
зультатів через XAI-аналіз. Подальший розвиток передбачає створення цифрових двійни-
ків об’єктів критичної інфраструктури з вбудованими AI-модулями оцінки ризику, 
застосування мультиагентних моделей для імітації поведінки атак і розширення механізмів 
XAI для візуалізації впливу кожного параметра на інтегральний рівень загрози. 

Висновки. У статті розроблено та представлено інтелектуальну систему сценарного 
моделювання оцінки захищеності об’єктів критичної інфраструктури, що поєднує ме-
тоди машинного навчання, нечіткої логіки, графових структур і пояснюваного штучного 
інтелекту (XAI-модуля). Запропонована математична модель дозволяє формалізувати 
взаємозв’язки між активами, загрозами, уразливостями та контрзаходами, а також врахо-
вувати часову динаміку ризиків. Завдяки цьому забезпечується адаптивна оцінка стану 
захищеності в реальному часі, прогнозування сценаріїв розвитку інцидентів і вибір оп-
тимальних контрзаходів з урахуванням обмежених ресурсів. 

Експериментальні результати продемонстрували здатність системи автоматично онов-
лювати профіль ризику, мінімізувати похибку прогнозування та підтримувати пояснюва-
ність результатів для аналітиків SOC через XAI-модуль. Розроблена архітектура може бути 
інтегрована у цифрові двійники кіберзахисту або центри моніторингу безпеки критичної ін-
фраструктури, що підвищує рівень кіберстійкості та оперативність реагування на інциденти. 

Подальші дослідження доцільно спрямувати на розширення функціоналу системи 
шляхом інтеграції мультиагентних моделей поведінки атак, удосконалення механізмів 
байєсівського оновлення знань і створення візуальних XAI-інтерфейсів для аналізу впливу 
окремих параметрів на інтегральний рівень загроз. Реалізація таких підходів сприятиме 
формуванню нового покоління інтелектуальних систем кіберзахисту, здатних до самонав-
чання, самокорекції та випереджувального реагування в умовах динамічних кіберзагроз. 
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INTELLIGENT SYSTEM FOR SCENARIO MODELING OF SECURITY 
ASSESSMENT OF CRITICAL INFRASTRUCTURE OBJECTS 

The urgency of the research arises from the growing sophistication and frequency of cyberattacks targeting critical in-
frastructure, where conventional static risk assessment techniques cannot reflect the dynamic interdependencies between as-
sets, threats, vulnerabilities, and countermeasures. These challenges highlight the need for an intelligent and adaptive system 
capable of predicting, explaining, and mitigating evolving cyber risks in real time. 

The problem addressed in this study lies in the absence of comprehensive models that integrate temporal forecasting, 
uncertainty quantification, and explainable decision-making within cybersecurity operations. Existing solutions are often 
static, fragmented, and incapable of generating adaptive risk scenarios or ensuring transparency in AI-driven reasoning. 
The main objective of the research is to develop an intelligent system for scenario modeling of security assessment for critical 
infrastructure objects, which provides dynamic evaluation of protection effectiveness and supports optimal resource allocation 
for risk mitigation. 

The proposed model integrates machine learning, fuzzy logic, and graph theory to represent causal dependencies among 
security entities. The system architecture includes a data layer responsible for event aggregation and normalization, an AI 
layer using LSTM and XAI modules for forecasting and interpretability, and a decision layer for visualization and integration 
with SOC, SIEM, and SOAR platforms. Experimental results have shown improved accuracy of risk prediction, adaptive thresh-
old adjustment, and significant reduction of false positives. 

The conclusions emphasize that the developed system forms a comprehensive, explainable, and resource-efficient ap-
proach to cybersecurity risk management. It enables proactive protection, continuous self-learning, and transparency in eval-
uating defense performance. The research outcomes can enhance the cyber resilience of critical infrastructure and facilitate 
digital twin–based intelligent security monitoring. 

Keywords: risk assessment; scenario modeling; artificial intelligence; critical infrastructure; fuzzy logic; risk graph; 
machine learning; cybersecurity; digital twins. 
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