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ДОСЛІДЖЕННЯ СИМУЛЯЦІЇ З ВИКОРИСТАННЯМ ГІБРИДНОГО 
АЛГОРИТМУ ОПТИМІЗАЦІЇ РОЮ ЧАСТИНОК ТА МУРАШИНОГО 

АЛГОРИТМУ В MATLAB 
У роботі представлено підхід до підвищення енергоефективності батарей пристроїв Інтернету речей шляхом 

застосування гібридного алгоритму оптимізації, що поєднує метод рою частинок та мурашиний алгоритм. Запропоно-
ваний підхід орієнтований на мінімізацію енергоспоживання при збереженні стабільної продуктивності системи. Дос-
лідження виконано за допомогою симуляційного моделювання в середовищі MATLAB, що дозволило оцінити ефектив-
ність алгоритму на різних сценаріях роботи IoT-пристроїв. Результати експериментів продемонстрували зменшення 
енергоспоживання батарей порівняно з традиційними методами оптимізації, а також покращення часу роботи при-
строїв без підзарядки. Отримані висновки підтверджують доцільність інтеграції гібридних алгоритмів оптимізації d 
системи Інтернету речей з метою забезпечення більшої автономності та довговічності сенсорних вузлів. 

Ключові слова: енергоефективність; Інтернет речей; оптимізація; батарея; MATLAB; алгоритм рою части-
нок; мурашиний алгоритм. 

Рис.: 1. Табл.: 7. Бібл.: 4. 

Актуальність теми дослідження. Стрімке зростання екосистеми Інтернету речей ро-
бить проблему енергоефективності однією з ключових у сучасних науково-технічних дослі-
дженнях. Мільярди пристроїв, що функціонують на батарейному живленні, потребують но-
вих підходів до продовження автономної роботи без втрати продуктивності та надійності.  

Традиційні методи управління енергоспоживанням дійсно виявляються недостат-
німи для динамічних умов експлуатації, що підтверджується численними дослідженнями 
останніх років. Впровадження гібридних алгоритмів оптимізації може бути перспектив-
ним напрямком, хоча їх ефективність значною мірою залежить від специфіки конкрет-
ного застосування.  

Поєднання рою частинок і мурашиного алгоритму теоретично дозволяє формувати 
адаптивні стратегії управління енергією. Проте, як показав аналіз літератури, подібні гіб-
ридні підходи часто страждають від підвищеної обчислювальної складності, що може ні-
велювати переваги від економії енергії. Актуальність роботи зумовлена не лише техніч-
ними викликами, а й зростаючими вимогами до екологічної сталості цифрових систем. 

Постановка проблеми. Швидке зростання кількості IoT-пристроїв справді супрово-
джується збільшенням потреб в енергоефективності. Однак варто зауважити, що біль-
шість вузлів не працює «виключно» на батарейному живленні – існують гібридні системи 
живлення та технології збирання енергії (energy harvesting). Традиційні підходи, засно-
вані на статичних стратегіях, мають свої переваги у вигляді простоти реалізації та перед-
бачуваності поведінки. 

Аналіз останніх досліджень і публікацій. У новітніх роботах спостерігається помі-
тний зсув від «чистих» роїнних методів до їх гібридизації, що дозволяє гнучкіше балан-
сувати між глобальним пошуком і локальною експлуатацією розв’язку. 

Зокрема у статті R. D. Joshi та співавторів [1] запропоновано протокол SIACOPSO, 
який комбінує ACO для вибору кластер-голів і багатострибкової маршрутизації з PSO 
для оптимізації розміщення вузлів і ребалансування навантаження. За результатами мо-
делювання (NS v2.34) гібрид продемонстрував нижче енергоспоживання та довший час 
  С. І. Волощук, В. Ю. Савінов, 2025 
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життя мережі порівняно з ACO та AODV, що емпірично підтверджує доцільність інте-
грації двох біоінспірованих парадигм у WSN/IoT-сценаріях. 

Суміжна тенденція простежується і у роботі S. Sharmin та співавторів [2], де гібрид-
ний PSO поєднано з поліпшеним LEACH (HPSO-ILEACH) для вибору кластер-голів і 
агрегування даних. Автори фіксують зменшення середнього енергоспоживання (~28 %) і 
збільшення частки «живих» вузлів (≈55 % після тривалих раундів), що засвідчує ефект 
від поєднання еволюційного пошуку з доменно-специфічною евристикою кластеризації. 

Подібний підхід представлено Lenin K. та співавторами [3], де ACO та PSO було 
об’єднано для зниження втрат активної потужності у великих енергетичних системах, 
що підтвердило ефективність гібридизації біоінспірованих методів. 

Крім того, у нещодавній роботі Zhang Y. та співавторів [4] запропоновано енергоефе-
ктивний протокол маршрутизації для гетерогенних сенсорних мереж, який поєднує PSO 
з динамічною кластеризацією, що забезпечило суттєве зниження енергоспоживання вуз-
лів та підвищення стабільності мережі. 

Виділення недосліджених частин загальної проблеми. Попри значну кількість ро-
біт, присвячених оптимізації енергоспоживання у бездротових сенсорних мережах та си-
стемах Інтернету речей, залишається низка аспектів, які досліджені недостатньо. Зок-
рема, більшість наявних публікацій фокусуються або на алгоритмах рою частинок, або 
на мурашиних алгоритмах як самостійних методах. Глибока інтеграція цих підходів із 
формуванням гібридних стратегій оптимізації все ще перебуває на початковому етапі ро-
звитку, а результати таких робіт є поодинокими. Недостатньо уваги приділяється і про-
гнозному моделюванню енергетичних потреб пристроїв, що може суттєво вплинути на 
ефективність управління енергією в динамічних умовах. 

Крім того, більшість існуючих досліджень обмежуються тестуванням алгоритмів на 
спрощених моделях без урахування впливу таких факторів, як деградація батарей, тем-
пературні коливання чи масштабованість при великій кількості вузлів. Саме ці прогалини 
й стали об’єктом фокусування цієї роботи. Запропонований підхід поєднує сильні сто-
рони рою частинок і мурашиного алгоритму з прогнозними можливостями нейронних 
мереж, що дозволяє створити більш реалістичну та адаптивну основу для управління 
енергоспоживанням пристроїв IoT. 

Метою статті є підвищення енергоефективності пристроїв Інтернету речей шляхом 
розробки та симуляції гібридного алгоритму, який поєднує метод рою частинок і мура-
шиний алгоритм у MATLAB. 

Екосистема Інтернету речей охоплює мільярди підключених пристроїв, які перева-
жно покладаються на батарейне живлення для функціонування. Ці пристрої, від датчи-
ків навколишнього середовища до розумних побутових приладів, стикаються з фунда-
ментальним викликом максимізації операційного терміну служби при збереженні 
необхідних рівнів продуктивності. Традиційні підходи до управління живленням засто-
совують статичні стратегії, які не здатні адаптуватися до динамічних операційних умов, 
що призводить до субоптимального використання енергії та скорочення тривалості ро-
боти пристроїв. 

Покращення енергоефективності батарей у пристроях IoT потребує складних алго-
ритмів, здатних збалансувати множинні конкуруючі цілі: мінімізацію енергоспоживання, 
підтримання надійності зв’язку, забезпечення цілісності даних та продовження операцій-
ного терміну служби. Складність цієї задачі зростає експоненційно зі збільшенням кіль-
кості пристроїв, протоколів зв’язку та змінних середовища. 
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Це дослідження розглядає такі виклики шляхом впровадження нового гібридного ал-
горитму, що поєднує оптимізацію рою частинок із мурашиним алгоритмом оптимізації 
та елементами машинного навчання у симуляційному середовищі MATLAB для розро-
бки адаптивної системи управління енергією для пристроїв IoT. Дослідження зосереджу-
ється на створенні комплексної концептуальної основи, яка може динамічно регулювати 
параметри енергоспоживання на основі операційних умов реального часу та прогнозова-
них майбутніх потреб. 

Виклад основного матеріалу. MATLAB було обрано як основну платформу для симу-
ляції завдяки комплексному пакету оптимізації, потужним можливостям чисельного обчис-
лення та широкій підтримці бібліотек для моделювання систем IoT. Пакет глобальної опти-
мізації забезпечує нативну реалізацію ОРЧ, тоді як додатково розроблений модуль АСО 
дозволяє гібридну оптимізацію. Пакет комунікацій дозволяє реалістичне моделювання про-
токолів бездротового зв’язку, що зазвичай використовуються в розгортаннях IoT. 

Симуляційне середовище включає декілька ключових пакетів MATLAB: пакет обро-
бки сигналів для аналізу даних сенсорів, пакет статистики та машинного навчання для 
прогнозного моделювання енергетичних потреб, пакет нейронних мереж для адаптив-
ного управління параметрами та пакет паралельних обчислень для прискорення велико-
масштабних симуляцій. 

Новий гібридний алгоритм було розроблено для оптимізації семи критичних пара-
метрів, що впливають на енергоспоживання пристроїв IoT: рівні потужності передачі, 
тривалість циклів сну, частоти дискретизації сенсорів, коефіцієнти стиснення даних, ін-
тервали планування комунікації, адаптивні порогові значення та прогнозні коефіцієнти 
навантаження. Алгоритм підтримує рій з 50 частинок з додатковою феромонною матри-
цею для мурашиного компонента. 

Ключові нововведення: 
1. Адаптивна інерційна вага – замість лінійного зменшення використовується дина-

мічна формула: 

𝑤(𝑡) = (𝑤௠௔௫ − 𝑤௠௜௡) × 𝑒𝑥൫−𝛽 × 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑡)൯  + 𝑤௠௜௡, (1) 

де diversity(t) – міра різноманітності рою на ітерації t. 
2. Феромонні сліди АСО – кожна успішна конфігурація залишає феромонний слід: 

 𝜏(𝑖, 𝑗) = (1 − 𝑝) × 𝜏(𝑖, 𝑗) + ∆𝜏(𝑖, 𝑗),       (2) 

де    ρ – коефіцієнт випаровування;  
Δτ(i,j) – приріст феромону. 
3. Прогнозне моделювання – нейронна мережа LSTM передбачає майбутні енерге-

тичні потреби на основі історичних даних. 
4. Багаторівневий локальний пошук – табу-пошук для уникнення локальних мінімумів. 
Параметри гібридного алгоритму: адаптивна інерційна вага (0,4-0,9), когнітивний 

коефіцієнт прискорення 2,1, соціальний коефіцієнт прискорення 1,9, коефіцієнт феро-
мону α = 0,1, коефіцієнт випаровування ρ = 0,02. 

Для наочного представлення відмінностей між оригінальним та покращеним підхо-
дами нижче представлені блок-схеми обох алгоритмів (рис. 1). 

Як видно з порівняння, гібридний підхід включає додаткові етапи прогнозного мо-
делювання, оновлення феромонних слідів, багаторівневий локальний пошук та адапти-
вне управління параметрами, що забезпечує значно кращу продуктивність. 
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Рис. 1. Алгоритм роботи: 
а – оригінальний алгоритм ОРЧ; б – покращений гібридний алгоритм ОРЧ-АСО 
Джерело: розроблено авторами. 

Розширена функція придатності включає прогнозний компонент: 
𝐹 = 0,35 × Енергія + 0,25 × Звᇱязок + 0,2 × Якість + 0,15 × Відгук + 0,05 × Прогноз 

Симуляція моделює гетерогенні пристрої IoT з розширеними профілями енергоспо-
живання. Кожна модель пристрою включає реалістичні динамічні шаблони енергоспо-
живання для основних операційних станів: активне зондування (12-28 мА), обробка да-
них (6-15 мА), бездротова передача (25-50 мА), локальна обробка машинного навчання 
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(18-35 мА) та режим сну (0,3-2,5 мА). Ємність батареї коливається від 800 мАг для най-
менших сенсорів до 6000 мАг для розумних пристроїв-шлюзів. 

Додано моделювання деградації батареї з часом та температурні ефекти на ємність 
батареї, що робить симуляцію більш реалістичною. 

Симуляція виконувала 1000 пристроїв IoT протягом 30 днів безперервної роботи, 
генеруючи 720 000 точок даних для комплексного аналізу. Гібридна система управління 
енергією ОРЧ-АСО продемонструвала значні поліпшення порівняно як з базовими ста-
тичними підходами, так і з оригінальним алгоритмом ОРЧ. У табл. 1 наведено порів-
няння енергоспоживання за категоріями пристроїв. 

Таблиця 1 – Порівняння енергоспоживання за категоріями пристроїв 

Категорія  
пристроїв 

Базовий  
показник 

(мВт*год/день)

ОРЧ 
(мВт*год/день)

ОРЧ-АСО  
гібрид 

(мВт*год/день) 

Економія 
проти базо-

вого (%) 

Покращення 
проти ОРЧ 

(%) 

Подовження 
терміну  

служби (%) 
Датчики  

навколишнього 
середовища 

125,4 74,2 67,8 45,9 8,6 47,1 

Пристрої розум-
ного дому 

168,7 121,5 110,3 34,6 9,2 35,8 

Промислові  
датчики IoT 

152,9 97,8 88,4 42,2 9,6 43,5 

Пристрої-шлюзи 245,6 172,3 156,7 36,2 9,1 37,4 
Носимі пристрої 89,3 58,7 52,1 41,7 11,2 43,2 

Середнє  
значення 

142,3 92,7 85,1 40,2 9,5 41,4 

Джерело: розроблено авторами. 

Середнє добове енергоспоживання зменшилося з 142,3 мВт⋅год на пристрій (базовий 
показник) до 85,1 мВт⋅год на пристрій (ОРЧ-АСО гібрид), що становить 40,2 % скоро-
чення використання енергії. Гібридний алгоритм досягав збіжності в середньому за 132 
ітерації, що на 11 % швидше за оригінальний ОРЧ, при цьому глобальне найкраще рі-
шення стабілізувалося приблизно після 175 ітерацій. У табл. 2 наведені метрики проду-
ктивності гібридного алгоритму. 

Таблиця 2 – Метрики продуктивності гібридного алгоритму ОРЧ-АСО 

Метрика продуктивності 
ОРЧ-АСО 

гібрид 
Оригінальний 

ОРЧ 
Покращення 

Стандартне  
відхилення 

Довірчий  
інтервал (95 %) 

Ітерації збіжності 132,4 148,7 11,0 % 19,7 127,3-137,5 
Стабілізація глобального 

оптимуму 
174,8 201,3 13,2 % 26,3 169,6-180,0 

Значення функції  
придатності 

0,891 0,847 5,2 % 0,071 0,878-0,904 

Час оптимізації  
(секунди) 

923,7 847,2 -9,0 %* 134,2 897,4-950,0 

Оцінка якості рішення 0,956 0,923 3,6 % 0,058 0,945-0,967 
Стабільність рішення 0,934 0,889 5,1 % 0,063 0,924-0,944 

*Незначне збільшення часу обчислень через додаткові компоненти АСО та МН. 
Джерело: розроблено авторами. 

Подовження терміну служби пристроїв варіювалося залежно від сценарію розгор-
тання: датчики моніторингу навколишнього середовища показали 47 % поліпшення тер-
міну служби, пристрої розумного дому досягли 36 % подовження, а промислові датчики 
IoT продемонстрували 44 % поліпшення. Ці результати відображають здатність гібрид-
ного алгоритму ефективніше адаптувати стратегії оптимізації до конкретних вимог за-
стосувань та операційних обмежень. 
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Процес оптимізації підтримував надійність зв’язку вище 97,2 % в усіх тестових сце-
наріях, одночасно зменшуючи потужність передачі в середньому на 26,8 %. Коефіцієнти 
доставки пакетів покращилися та залишалися в межах відмінних діапазонів (97,1 % до 
99,1 %) завдяки інтелектуальному прогнозуванню якості каналу зв’язку. Табл. 3 демон-
струє продуктивність зв’язку в різних мережах. 

Таблиця 3 – Аналіз продуктивності зв’язку 

Сценарій мережі 
Коефіцієнт  

доставки пакетів 
(%) 

Середня  
затримка (мс) 

Зменшення  
потужності  

передачі (%) 

Якість сигналу 
(дБм) 

Прогнозна  
точність (%) 

Щільна міська зона 97,1 (+0,9) 251 (-16) 22,3 (+3,8) -71,2 (+1,2) 94,3 
Приміська  

житлова зона 98,4 (+0,6) 218 (-16) 28,7 (+4,6) -67,8 (+1,1) 96,1 

Сільська сільсько-
господарська зона 

98,8 (+0,7) 173 (-16) 31,2 (+4,5) -64,1 (+1,1) 97,4 

Промисловий  
комплекс 

97,6 (+0,7) 267 (-22) 23,8 (+4,5) -72,9 (+1,2) 93,7 

Розумна будівля 99,1 (+0,4) 186 (-15) 30,1 (+4,3) -65,4 (+1,3) 98,2 
Середнє значення 98,2 (+0,7) 219 (-17) 27,2 (+4,3) -68,3 (+1,2) 95,9 

*Числа в дужках показують покращення порівняно з оригінальним ОРЧ 
Джерело: розроблено авторами. 

Таблиця 4 демонструє наявні помилки системи. 

Таблиця 4 – Метрики якості даних та помилок 

Тип помилки 
Базова  

система (%) 
ОРЧ (%) 

ОРЧ-АСО  
гібрид (%) 

Коефіцієнт  
поліпшення 

Точність  
виявлення (%) 

Хибно позитивні 0,47 0,29 0,21 2,24x 98,1 
Хибно негативні 0,23 0,15 0,11 2,09x 99,2 

Помилки передачі 1,12 0,68 0,48 2,33x 99,6 
Пошкодження даних 0,31 0,19 0,14 2,21x 99,9 

Помилки  
синхронізації 

0,89 0,54 0,38 2,34x 99,4 

Джерело: розроблено авторами. 

Затримка мережі зменшилася на 7,2 % завдяки інтелектуальному прогнозуванню оп-
тимальних вікон передачі (середня затримка: 219 мс порівняно з 236 мс оригінального 
ОРЧ та 245 мс базового підходу). Гібридний алгоритм успішно покращив баланс між 
економією енергії та вимогами до продуктивності. 

Гібридний алгоритм продемонстрував покращені характеристики масштабованості, 
з обчислювальною складністю, що зростає логарифмічно завдяки ефективному кешу-
ванню феромонних слідів. Час симуляції для 1000 пристроїв становив у середньому 
51 хвилину на стандартному обладнанні (Intel Core i7-13700K, 32 ГБ ОЗП), що лише на 
8,5 % більше за оригінальний ОРЧ при значно кращій якості рішень. У табл. 5 наведено 
аналіз масштабованості продуктивності алгоритму. 

Таблиця 5 – Аналіз масштабованості продуктивності 
Розмір мережі 

(пристрої) 
Час симуляції 

(хвилини) 
Використання 
пам’яті (ГБ) 

Завантаження ЦП 
(%) 

Оцінка якості 
збіжності 

Прогнозна точ-
ність (%) 

100 4,6 (+ 0,4) 2,3 (+ 0,2) 36,8 (+ 2,3) 0,958 (+ 0,017) 97,2 
250 12,8 (+ 1,1) 5,2 (+ 0,4) 45,1 (+ 2,8) 0,951 (+ 0,016) 96,8 
500 25,7 (+ 2,3) 10,1 (+ 0,9) 59,4 (+ 2,7) 0,944 (+ 0,016) 96,3 
750 38,6 (+ 3,5) 14,9 (+ 1,3) 72,1 (+ 3,2) 0,939 (+ 0,015) 95,9 

1000 51,2 (+ 4,0) 19,8 (+ 1,7) 81,5 (+ 3,3) 0,934 (+ 0,013) 95,5 
1500 78,9 (+ 7,1) 29,4 (+ 2,5) 92,7 (+ 3,3) 0,928 (+ 0,011) 94,8 

Джерело: розроблено авторами. 
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У табл. 6 продемонстровано вплив навколишнього середовища на продуктивність. 

Таблиця 6 – Вплив навколишнього середовища на продуктивність алгоритму 
Умови навколишнього 

середовища 
Економія  

енергії (%) 
Ітерації  

збіжності 
Час адаптації 

(години) 
Індекс  

стабільності 
Точність  

прогнозу (%) 
Стабільна температура 

(20 °C) 
42,1 (+ 5,9) 128 (+ 14) 1,8 (+ 0,3) 0,96 (+ 0,02) 98,4 

Змінна температура 
(від -10 °C до 40 °C) 

37,4 (+ 5,6) 145 (+ 22) 2,9 (+ 0,5) 0,91 (+ 0,04) 96,2 

Висока вологість (> 80 % 
відносної вологості) 

34,8 (+ 5,4) 164 (+ 25) 3,6 (+ 0,6) 0,88 (+ 0,05) 94,7 

Сигнальні перешкоди 
(міські умови) 

33,2 (+ 5,3) 178 (+ 25) 4,3 (+ 0,8) 0,84 (+ 0,05) 93,1 

Екстремальні умови 29,4 (+ 4,8) 201 (+ 33) 5,9 (+ 0,9) 0,78 (+ 0,06) 91,3 

Джерело: розроблено авторами. 

Інтегрована LSTM нейронна мережа продемонструвала високу точність у прогнозу-
ванні енергетичних потреб пристроїв IoT. Модель навчалася на перших 7 днях операцій 
та адаптувалася щоденно. У табл. 7 наведено продуктивність прогнозного моделювання. 

Таблиця 7 – Продуктивність прогнозного моделювання 
Тип прогнозу Точність (%) Час навчання (хв) Час інференції (мс) RMSE MAE 

Короткостроковий (1-6 годин) 97,8 12,4 2,3 0,023 0,018 
Середньостроковий (1-3 дні) 94,6 18,7 3,1 0,041 0,035 
Довгостроковий (1-2 тижні) 89,3 25,2 4,8 0,067 0,058 

Сезонні коливання 92,1 31,8 6,2 0,052 0,044 
Джерело: розроблено авторами. 

Дослідження демонструє, що гібридна оптимізація енергоспоживання на основі ОРЧ-
АСО з елементами машинного навчання забезпечує суттєві переваги для управління бата-
реями пристроїв IoT. Поєднання колективного інтелекту рою частинок з пам’яттю мура-
шиного алгоритму та прогнозними можливостями нейронних мереж створює синергетич-
ний ефект, що приводить до кращих рішень, ніж кожен компонент окремо. 

Здатність алгоритму одночасно оптимізувати множинні конкуруючі цілі при збереженні 
та навіть покращенні продуктивності системи робить його особливо придатним для різно-
манітних сценаріїв розгортання IoT. Феромонні сліди дозволяють системі «пам’ятати» успі-
шні конфігурації та швидше адаптуватися до подібних умов у майбутньому. 

Адаптивний характер запропонованого процесу оптимізації, доповненого прогноз-
ним моделюванням, у теорії дозволяє пристроям проактивно реагувати на зміни умов 
навколишнього середовища. Втім, точність прогнозування в реальних умовах може бути 
недостатньою через непередбачуваність багатьох факторів впливу.  

Практичне впровадження гібридної концепції стикається з серйозними обмежен-
нями обчислювальних ресурсів IoT-пристроїв. Запропонована ієрархічна архітектура, де 
прості пристрої виконують локальні оптимізації, а складніші обчислення делегуються 
шлюзам або хмарній інфраструктурі, може призвести до додаткових затримок та залеж-
ності від мережевого з’єднання.  

Дослідження виявило декілька критичних факторів впровадження: потребу в точні-
ших моделях енергоспоживання з урахуванням прогнозних компонентів, надійних про-
токолах зв’язку для оновлення параметрів та синхронізації феромонних матриць, меха-
нізмах відмовостійкості для запобігання системним збоям та періодичному оновленні 
моделей машинного навчання. 
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Початкова фаза навчання системи потребує 5-7 днів для накопичення достатньої кі-
лькості даних для ефективної роботи прогнозних моделей, що слід враховувати при пла-
нуванні розгортання. 

У той час, як федеративне навчання дійсно може покращити приватність і зменшити 
навантаження на мережу, його використання у пристроях IoT, які мають обмежені ресу-
рси, залишається технічно складним завданням. Попри те, що інтеграція з відновлюва-
ними джерелами енергії вимагає додаткових досліджень щодо їх надійності. Враховуючи 
поточний стан квантових обчислень, говорити про квантові алгоритми оптимізації вида-
ється дещо передчасним. 

Висновки. Це дослідження успішно демонструє переваги гібридного алгоритму оп-
тимізації рою частинок мурашиного алгоритму з елементами машинного навчання для 
управління енергоспоживанням батарей у пристроях IoT через комплексну симуляцію в 
MATLAB. Запропонована концептуальна основа досягає значної економії енергії при по-
кращенні рівнів продуктивності в різноманітних операційних сценаріях. 

Результати симуляції вказують, що гібридна адаптивна оптимізація енергоспожи-
вання може продовжити операційний термін служби пристроїв IoT на 36-47 % порівняно 
зі статичними підходами до управління живленням та на 8-11 % порівняно з базовим ал-
горитмом ОРЧ. Ці поліпшення досягаються при покращенні вимог до надійності зв’язку 
та цілісності даних завдяки інтелектуальному прогнозуванню. 

Гібридна реалізація в MATLAB забезпечує міцну основу для подальших досліджень 
та розробок в оптимізації енергоспоживання IoT.  

Модульна архітектура сприяє розширенню до додаткових алгоритмів оптимізації, 
методів машинного навчання та інтеграції з новими технологіями IoT. 

Дослідження сприяє зростаючому корпусу знань, що розглядає виклики енергоефе-
ктивності в системах IoT, та надає практичні висновки для впровадження інтелектуаль-
ного управління живленням у розгортаннях реального світу.  

Майбутня робота повинна зосередитися на валідації через тестування фізичних при-
строїв, розробці федеративних підходів до навчання та дослідженні квантових методів 
оптимізації для наступного покоління систем IoT. 

Заява про використання генеративного ШІ та технологій на основі ШІ  
в процесі написання тексту статті 

Під час написання цього матеріалу автори використовували Claude AI для перевірки 
на орфографію та правильність розставлення знаків пунктуації. Після використання 
цього сервісу автори переглянули та відредагували зміст за потреби і взяли на себе повну 
відповідальність за зміст публікації. 
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A SIMULATION STUDY OF HYBRID PARTICLE SWARM OPTIMIZATION  
AND ANT COLONY ALGORITHM IN MATLAB 

The rapid expansion of the Internet of Things (IoT) has resulted in billions of battery-powered devices, making energy effi-
ciency a critical factor for their usability. Ensuring long-term autonomous operation without reducing performance or communi-
cation reliability is a complex challenge, since most traditional optimization methods rely on static strategies and fail to address 
the dynamic nature of IoT environments. This leads to premature battery depletion and limits the scalability of IoT ecosystems. 

The purpose of this article is to develop and simulate a hybrid algorithm that combines Particle Swarm Optimization 
(PSO) and Ant Colony Optimization (ACO) in MATLAB to improve the energy efficiency of IoT devices. A review of recent 
studies (Joshi et al., 2025; Sharmin et al., 2023; Lenin et al., 2018; Zhang et al., 2025) demonstrates that integrating metaheu-
ristics can significantly enhance resource management in sensor networks. However, most research focuses on single tech-
niques and does not fully explore the potential of hybrid approaches. 

This study highlights unexplored aspects, including the synergy of PSO and ACO, the use of LSTM networks for predicting 
energy demand, and simulations accounting for battery degradation and temperature effects. The proposed algorithm optimizes 
critical parameters (transmission power, sleep cycles, sampling frequency), reducing average daily energy consumption by 
more than 40 % and extending device lifetime by up to 47 % compared to baseline methods. 

The results confirm the effectiveness of hybrid algorithms in improving IoT device autonomy and provide a strong foun-
dation for their practical application in real-world deployment scenarios. 

Keywords: Internet of Things; energy efficiency; optimization; Particle Swarm Optimization; Ant Colony Optimiza-
tion; MATLAB. 
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