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ДІАГНОСТИКА РАКУ ГРУДЕЙ: IOT-СИСТЕМА З FPGA  
ТА WEKA-АНАЛІТИКОЮ 

У сучасному світі все більше приділяється увага науковців аналізу раку молочної залози. У статті проводиться 
огляд алгоритмів стиснення зображень, отриманих з ПЛІС систем для подальшої роботи у застосунку WEKA. За-
пропоновано можливості для ранньої діагностики раку молочної залози. Системи, які поєднують інтернет речі (IoT), 
програмовані логічні схеми (ПЛІС) та програму для аналізу даних, дозволять проводити щоденний моніторинг стану 
здоров’я та діагностувати можливі захворювання на ранній стадії. Також описано, як стиснення медичних зобра-
жень впливає на точність їхнього аналізу. 

Ключові слова: ПЛІС; WEKA; інформаційні технології; стиснення зображень; jpeg-ls. 
Рис.: 5. Табл.: 3. Бібл.: 8. 

Актуальність теми дослідження. Рак молочної залози залишається найпоширенішим 
онкологічним захворюванням у жінок. Його рання діагностика дає можливість успішно ді-
агностувати пухлини на ранній стадії їхнього утворення. Для підвищення ефективності 
цього процесу сучасна медицина потребує поєднання такої загальноприйнятої діагностики, 
як мамографія, з носимими пристроями для щоденного моніторингу стану здоров’я жінки. 
Тому сьогодні дуже важливо поєднувати нові технології, такі як спеціальні прискорювачі й 
розумні програми для аналізу даних, для створення безпечніших медичних рішень.  

Постановка проблеми. Звичайні методи діагностики мають кілька недоліків. На-
приклад, такий метод діагностики, як мамографія, зазвичай роблять лише раз на рік. Та-
ким чином, залишається великий проміжок часу, під час якого рак може розвиватися не-
помітно. З іншого боку, сучасні системи, що використовують штучний інтелект, 
потребують великих обчислювальних потужностей. Якщо оптимізувати таку систему та-
ким чином, щоб вона потребувала менших потужностей, це дозволить використання про-
стих пристроїв для моніторингу за станом здоров’я у реальному часі.  

Аналіз останніх досліджень. Сучасні дослідження присвячені таким напрямкам, як 
інтернет речей (IoT), ПЛІС як прискорювач та використання WEKA (Waikato 
Environment for Knowledge Analysis) для аналізу даних.  

У статті [1] автори досліджують виявлення раку молочної залози за допомогою тер-
мографічних зображень. Таким чином, вони описують популярний метод візуалізації ді-
агностики раку молочної залози – мамографію, використання якого не дозволяє виявляти 
захворювання на ранній стадії. Автори пропонують використання інфрачервоної термо-
графії як нову технологію для виявлення злоякісних захворювань на ранній стадії. 

Автори статті [2] пропонують використовувати для постійного моніторингу здоров’я 
рішення на основі FPGA, а саме моделі Xilinx Spartan-7, яка за результатами їх дослідження 
продемонструвала високу енергоефективність, що дозволило подовжити час роботи сис-
теми та термін служби батареї, а також провели порівняння їх системи з аналогічними, але 
на базі мікроконтролерів. Таким чином, автори дійшли висновку про більшу ефективність 
та пропускну здатність системи, що досліджувалась. 

Стаття [3] присвячена методам інтелектуального аналізу, які використовуються для ана-
лізу даних, отриманих з носимих пристроїв. У ній описується використання академічного 
набору даних про рак молочної залози для проведення інтелектуального аналізу даних в за-
стосунку WEKA. Крім того, у ній описується оптимізація даних за допомогою попередньої 
обробки та вилучення малозначущих ознак перед початком аналізу. Результати дослідження 
демонструють, що класифікатор лінивого IBK k-NN може досягти точності 98 %. 

  Д. С. Гончаров, 2025 
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У статті [4] розглядаються труднощі аналізу медичних зображень, такі як: високі об-
числювальні вимоги та затримка моделей глибокого навчання у медичній візуалізації. У 
своїй роботі автори представляють апаратний прискорювач FPGA з використанням сис-
теми на кристалі Zynq XC7Z020. 

Стаття [5] описує апаратну реалізацію двох прискорювачів для двох альтернативних 
алгоритмів візуалізації, які автори отримали зі специфікації SystemC. Перший пов’яза-
ний з комунікацією, і вимагає перекриття та конвеєрної обробки, а другий – з обчислен-
нями та використовує складні математичні функції. 

У дослідженні [6] розроблено надійний метод класифікації раку молочної залози під 
назвою Shepherd на основі штучного інтелекту Crow. Для вибору найкращих маршрутів 
автори використовували безпечну обробку маршрутів з використанням FACS. 

У статті [7] автори також використовували апаратний прискорювач FPGA на кристалі 
Zynq XC7Z020, як і автори статті [4], але використовували з процесором ARM Cortex-A9. 

У статті [8] підсумовують результати розгортання моделі на різних обчислювальних 
пристроях із використанням глибокого навчання з FPGA. Автори включили у свою ро-
боту оцінку продуктивності моделі, пропускну здатність та порівняння затримки з різ-
ними розмірами пакетів. У результаті дослідники дійшли висновку, що FPGA є найбільш 
придатним для використання як прискорювач глибокого навчання. 

Виділення недосліджених частин загальної проблеми. Недослідженою частиною 
є створення системи, яка буде поєднувати різні технології. Таке поєднання дозволить зро-
бити діагностику доступнішою, частішою, такою, яка б не потребувала великих обчис-
лювальних потужностей. 

Мета дослідження – створити ефективну, портативну систему для діагностики раку 
молочної залози, використовуючи поєднання ПЛІС, IoT та аналізу даних за допомогою 
програми WEKA. 

Виклад основного матеріалу. Програмована логічна інтегральна схема – це прист-
рій, який можна налаштувати навіть після його виготовлення. Це робить його дуже гну-
чким і дозволяє швидко змінювати або оновлювати його функції. 

У запропонованій системі передбачається робота зі значними об’ємами даних, тому 
використання ПЛІС є ідеальною базою для її створення, оскільки дозволяє паралельно 
виконувати декілька операцій та швидко обробляти великі обсяги даних. Крім того, зна-
чною перевагою є гнучкість параметрів, що дає можливість налаштувати ПЛІС для ви-
конання конкретних задач.  

Таким чином, запропонована система складається з кількох основних частин: блока 
збору даних від сенсорів, блоку попередньої обробки сигналів, модуля стиснення зобра-
жень, контролера інтерфейсів зв’язку та модуля передавання даних у застосунок WEKA. 
Для її реалізації використовується плата Xilinx Spartan-7 у середовищі Vivado Design 
Suite. Основна логіка описана мовою VHDL, а для взаємодії з сенсорами та передавання 
даних застосовано готові IP-ядра для UART та SPI. Сенсори з’єднані з ПЛІС через ці 
інтерфейси, а передача результатів здійснюється через модуль ESP8266. Модуль стис-
нення результатів реалізований за допомогою алгоритму JPEG-LS, який дозволяє змен-
шити обсяг медичних зображень без втрати важливих деталей. 

Іншими словами, алгоритм роботи запропонованої системи працює таким чином. 
Коли пацієнт використовує систему, датчики збирають інформацію. Ця інформація спо-
чатку надходить до ПЛІС, яка її обробляє. ПЛІС здатна виконувати багато операцій од-
ночасно, що робить її ідеальною для швидкої обробки великих даних. Після цього дані 
відправляються до бази даних, а потім потрапляють у програму WEKA для подальшого 
аналізу (рис. 1). 
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Рис. 1. Схема роботи ПЛІС системи 

Джерело: розроблено автором. 

Така структура робить систему швидкою, дає змогу обробляти дані паралельно й не 
перевантажує центральний процесор. Саме тому для цієї задачі доцільно застосовувати 
FPGA, а не звичайний мікроконтролер чи DPS-процесор. 

Стиснення зображень раку молочної залози. 
Існує безліч алгоритмів для стиснення зображень, таких як: jpeg, jpeg 2000, jpeg-ls, 

webp, deep learning lossy compression. Проте для медичних цілей краще застосовувати 
алгоритми, які стискають дані без втрат. Медичні зображення можуть містити дрібні 
структури, втрата яких може призвести до некоректного аналізу. 

Таблиця 1 – Відомості про алгоритми стиснення 

Алгоритм 
Тип  

стиснення 
Переваги Недоліки 

Використання  
в медицині 

JPEG З втратами Простий, швидкий 

Сильні артефакти під 
час високого стис-

нення, погана робота  
з деталями 

Використовується 
нечасто через втрату 

дрібних деталей 

JPEG 2000 

Без втрат /  
з регульова-
ними втра-

тами 

Висока якість, під-
тримка ROI, висо-
кий динамічний  

діапазон 

Вища обчислювальна 
складність 

Широко використо-
вується DICOM, осо-
бливо для медичних 

зображень 

JPEG-LS 
Без втрат / 
майже без 

втрат 

Висока швидкість, 
низька складність, 

добре стискає  
гладкі області 

Менш ефективний для 
дуже текстурованих 

зображень 

Використовується у 
медичній візуалізації 

Deep Learning 
Lossy 

Compression 

З адаптив-
ними  

втратами 

Адаптивне збере-
ження важливих 

структур 

Потребує великих на-
борів даних, склад-

ність реалізації, ще не 
є стандартом 

Перспективний на-
прямок для збере-

ження ключових де-
талей у зображеннях 

Джерело: розроблено автором. 

Для порівняння ефективності алгоритмів було взято зображення раку молочної за-
лози, результати якої наведені в таблиці 2. 
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Таблиця 2 – Стиснення зображення різними алгоритмами 

Метод Оригінал 
Довжина 

рядка (біти) 
Стиснення рядка 

Довжина стисне-
ного рядка (біти) 

Коефіцієнт 
стиснення 

JPEG 

11001100 
10101110 
11001010 
11001100 
11001010 
11001010 
11001010 
11001010 
1100101 

71 

11001110 10101100 
10101001 00110100 
10100110 01101001 

00101110 

56 1,26 

JPEG 2000 71 
11100110 01011001 
10100110 01100110 

0100110110 
42 1,69 

JPEG-LS 71 

10101100 
10100110 
01001101 
00101001 

1010 

36 1,97 

Deep Learning 
Lossy 

71 

10011010 
00110010 
11001100 
11000100 

1010 

36 1,97 

Джерело: розроблено автором. 

Аналіз даних за допомогою WEKA. 
Для експерименту в застосунку WEKA з відкритого доступу було взято набір даних, які 

містять різні фізіологічні показники та їхній зв’язок з наявністю або відсутністю раку моло-
чної залози. 

У першому експерименті для побудови моделі було застосовано RandomForest, який 
створює рішення на основі багатьох дерев, що забезпечує високу стійкість і точність. 
Аналіз проводився на наборі даних із 596 прикладів і 32 атрибутами з використанням 
десятикратної крос-валідації для підвищення надійності оцінки. 

 
Рис. 2. Побудова моделі з 32 атрибутів 

Джерело: розроблено автором. 
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Отримані результати свідчать про високу якість моделі. Коефіцієнт кореляції стано-
вить 0,9157, що вказує на сильний зв’язок між прогнозованими та фактичними значен-
нями. Середня абсолютна похибка дорівнює 0,0053, а корінь середньоквадратичної по-
хибки – 0,0077, що демонструє низький рівень відхилення прогнозів від реальних даних. 
Відносні значення похибок 39,18 % і 42,40 % також підтверджують прийняту точність 
при роботі з багаторівневими медичними показниками (рис. 2). 

У другому експерименті був використаний набір, що містив 569 прикладів та 31 атри-
бут (усі, крім ідентифікатора пацієнтів). Оцінювання також проводилося за допомогою де-
сятикратної крос-валідації. Цього разу результати аналізу показали високу точність про-
гнозування. Коефіцієнт кореляції склав 0,9159, що вказує на дуже сильний зв’язок між 
фактичними та передбаченими значеннями. Середня абсолютна похибка дорівнює 0,0052, 
а корінь середньоквадратичної похибки 0,0076, що свідчить про мінімальне відхилення 
прогнозів від реальних даних. Відносні показники похибки також залишилися низькими 
38,46 % і 42,20 %, що підтверджує стабільність роботи алгоритму (рис. 3). 

 
Рис. 3. Побудова моделі з 31 атрибута 

Джерело: розроблено автором. 

Під час виконання третього експерименту на початку роботи проведемо аналіз даних 
за допомогою методу CFsSubsetEval у поєднанні з пошуком Best First. Таким чином, було 
відібрано найбільш значущі атрибути з початкового набору, що складався з 32 показни-
ків і 596 прикладів. У результаті перевірки 295 можливих комбінацій ознак було визна-
чено оптимальну підмножину з 6 атрибутів, яка надала високий рівень узгодженості з 
цільовою змінною показників придатності на рівні 0,846. 

До відібраних характеристик увійшли: smoothness_ mean, fractal_ dimension_ mean, 
compactness_ se, fractal_ dimension_ se, smoothness_ worst та compactness_ worst (рис. 4). 

Це свідчить про те, що саме параметри, пов’язані з гладкістю поверхні клітин, компа-
ктністю та фрактальними вимірами, мають найбільший вплив на визначення стану зразків. 
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Рис. 4. Визначення оптимальної підмножини 

Джерело: розроблено автором. 

Ці результати показують, що навіть за умови зменшення кількості вхідних даних до 
невеликої підмножини можна зберегти високу точність аналізу. 

У наступному експерименті для побудови моделі було застосовано RandomForest, 
проте зменшено кількість вхідних даних атрибутів. Замість 32 атрибутів залишено лише 
6 найбільш значущих показників. Такий підхід дозволить перевірити, як відбір ознак 
вплинув на якість прогнозування. 

Результати показали, що точність моделі знизилась порівняно з повним набором да-
них. Коефіцієнт кореляції становив 0,8141, що вказує на достатньо сильний, але вже сла-
бший зв’язок між фактичними та прогнозованими значеннями. Середня абсолютна по-
хибка зросла до 0,062, а корінь середньоквадратичної похибки до 0,0913, що відображає 
вищий рівень відхилень. Відносні показники похибки також зросли 51,63 і 57,90 %, що 
свідчить про втрату частини інформації при скороченні числа ознак (рис. 5). 

 
Рис. 5. Побудова моделі з шести атрибутів 

Джерело: розроблено автором. 
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Аналіз трьох класифікацій повного набору даних та скорочених наведено в табл. 3. 

Таблиця 3 – Аналіз успішності методів класифікацій 
Варіанти моделей Correlation coefficient MAE RMSE RAE (%) RRSE (%) 
Усі 32 атрибути 0,9157 0,0053 0,0077 39,18 42,40 
6 атрибутів з 32 0,8141 0,0620 0,0913 51,90 57,90 

31 атрибут (без ID) 0,9159 0,0052 0,0076 38,46 42,20 

Джерело: розроблено автором. 

Висновки. Запропоноване поєднання технологій ПЛІС, IoT та аналізу за допомогою 
застосунку WEKA має великий потенціал. Такий підхід допоможе поліпшити своєчасне 
діагностування раку молочної залози на ранній стадії. У ході дослідження було зроблено 
порівняння чотирьох алгоритмів для стиснення медичних даних, а саме зображень раку 
молочної залози. Порівняння одного зображення дозволило виявити, що алгоритми 
JPEG-LS та Deep Learning Lossy продемонстрували однакові результати, коефіцієнт сти-
снення 1,97. Попри те, що два алгоритми продемонстрували однакові результати, Deep 
Learning Lossy не є стандартом DICON. Незважаючи на це, алгоритм Deep Learning Lossy 
має великий потенціал у застосуванні для медичних даних. 

Проведена кластеризація за допомогою застосунку WEKA. Для кластеризації та від-
бору ключових ознак було взято набір даних, який містить 569 прикладів та 32 атрибути. 
Було виконано три кластеризації: повного набору даних, набору даних із видаленим іде-
нтифікатором пацієнта та набором, який складається з тих атрибутів, які було відібрано 
за допомогою CFsSubsetEval у поєднанні з пошуком Best First з початкового набору. Мо-
жна зробити висновок, що хоча кластеризація відібраних ознак показала непоганий ре-
зультат, все одно він вимагає доопрацювання у подальшій праці. Класифікація, яка міс-
тила 31 атрибут, продемонструвала коефіцієнт кореляції 0,9159, що є добрим 
результатом. Також було підтверджено, що атрибут з назвою «ідентифікатор пацієнта» не 
несе в собі корисної інформації для аналізу. 

Заява про використання генеративного ШІ та технологій  
на основі ШІ в процесі написання тексту статті 

Під час написання цього матеріалу автор використовував ChatGPT для упорядку-
вання думок стосовно постановки проблеми. Після використання цього інструменту/сер-
вісу автор переглянув та відредагував зміст за потреби і взяв на себе повну відповідаль-
ність за зміст публікації. 
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BREAST CANCER DIAGNOSTICS: IOT SYSTEM WITH FPGA  
AND WEKA ANALYTICS 

Breast cancer remains one of the most common diseases among women. Timely diagnosis will help reduce mortality rates 
and reduce treatment costs, as the longer the disease remains undiagnosed, the cost of treatment increases more. The article 
proposes an approach to creating a portable device based on the FPGA system. This device can be used at home, without the 
need to make an appointment with a doctor once more. A comparative analysis of four image compression algorithms was 
made. When compressing the same image with different algorithms, the best result was achieved using JPEG-LS and Deep 
Learning Lossy. Compression coefficient scores were 1,97. It should be noted that compression algorithms with large losses 
will not give the desired result, since there is a chance to lose an important part of the image for a correct diagnosis. The 
WEKA application was used for data analysis. The first study was conducted on a complete data set of 596 examples and 32 
attributes. The analysis was carried out using the RandomForest algorithm with tenfold validation. The results demonstrated 
high efficiency: the correlation coefficient was 0,9157, the mean absolute error – 0,0053, and the root of the mean square error 
– 0,0077. The second experiment consisted of 596 instances and 31 attributes (without patient ID). The result obtained was 
more accurate. The correlation coefficient is 0,9159, the mean absolute error is – 0,0052, and the root of the mean square error 
is – 0,0076. The third experiment differed from the previous ones. Before starting clustering, a search was performed for the 
attributes that have the greatest value. Using the CFsSubsetEval method in combination with the BestFirst search, 6 attributes 
were selected from the initial dataset. These indicators included indicators: smoothness_ mean, fractal_ dimension_ mean, 
compactness_ se, fractal_ dimension_ se, smoothness_ worst and compactness_ worst. As a result of using a set of 6 attributes, 
the accuracy of the model decreased, but still remained high enough, which indicates the possibility of maintaining the accuracy 
at a sufficient level even with a reduced amount of input data. 
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