
ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

261

DOI: https://doi.org/10.25140/2411-5363-2025-3(41)-261-271
УДК 004.42:37.091.3:378.018.43

Андрій Васильович Хижняк1, Володимир Вікторович Казимир2

1аспірант, старший викладач кафедри інформаційних та комп’ютерних систем
Національний університет «Чернігівська політехніка» (Чернігів, Україна)

E-mail: alf.andrey@gmail.com. ORCID: http://orcid.org/0009-0008-8655-3736

2доктор технічних наук, професор, професор кафедри інформаційних та комп’ютерних систем
Національний університет «Чернігівська політехніка» (Чернігів, Україна)

E-mail: vvkazymyr@gmail.com. ORCID: https://orcid.org/0000-0001-8163-1119. ResearcherID: Q-2925-2016

ДОМЕННО-ОРІЄНТОВАНА МОВА ОПИСУ ПЕРСОНАЛІЗОВАНИХ
ПРАКТИЧНИХ ЗАВДАНЬ ДЛЯ ІНЖЕНЕРНИХ СПЕЦІАЛЬНОСТЕЙ

У роботі представлений опис формальної граматики нової доменно-орієнтованої мови Learning Task Definition
Language (LTDL), призначеної для опису структури, етапів, залежностей, параметризації та запуску і налаштування
навчальних середовищ для виконання практичних завдань в інженерній освіті. Визначені особливості мови, сфера її
застосування. Проведене тестування мови: парсинг тести, лексичне тестування, тестування генерації коду, побу-
дова синтаксичного дерева, визначення непродуктивних та недосяжних символів. Показані можливості візуалізації
завдання за допомогою графічного варіанту мови.

Ключові слова: практичні завдання; автоматична генерація; автоматичне оцінювання; персоналізація нав-
чання; формальна граматика; доменно-орієнтована мова.

Рис.: 3. Табл.: 2. Бібл.: 14.

Актуальність теми дослідження. Останніми роками зростає попит на масштабовані
та персоналізовані освітні інструменти, спрямовані на підтримку автоматизації та академі-
чної доброчесності. Особливо це актуально в розрізі практичних завдань, які служать на-
ріжним каменем навчання студентів інженерних спеціальностей. Важливо, щоб завдання
були структурованими, машиночитаними та параметризованими; ці аспекти забезпечу-
ються формальним визначенням внутрішньої структури цих завдань [1]. Збалансованість
практичних завдань може бути досягнута, наприклад, шляхом використання доменно-орі-
єнтованої мови (DSL), за допомогою якої можна спростити розробку навчальних компоне-
нтів як викладачами при створенні методичних вказівок до лабораторних і практичних за-
нять, так і студентами в процесі самостійного опанування навчального контенту.

Постановка проблеми. Спроби використати DSL в освітніх цілях фіксуються впро-
довж останніх років [2, 3, 4, 5, 6], однак розробка спеціалізованих мов для формалізації
опису шаблонів практичних завдань залишається недостатньо розвиненою. Існуючі DSL
мають обмежений функціонал, іншу направленість та низку концептуальних і технологі-
чних недоліків щодо опису типів завдань, способів перевірки, рівнів складності, контекс-
тів виконання тощо.

Аналіз останніх джерел і публікацій. У роботі [2] розроблено DSL для автоматизо-
ваного створення та налаштування віртуальних класів у рамках LMS. Вона забезпечує
високий рівень абстракції та візуальність за рахунок використання графічного режиму в
рамках Eclipse Graphical Modeling Framework і дозволяє викладачам створювати класи
схематично. Ця мова має низку концептуальних і технологічних обмежень: тісно
пов’язана з конкретною платформою, спрямована на структурування середовища нав-
чання, але не моделює сам зміст завдань, не передбачено адаптивних механізмів і не при-
датна для складних сценаріїв. У роботі [3; 4] представлена нова вбудована домен-специ-
фічна мова EDSL. Ця мова є центральним елементом фреймворку, призначеним для
опису параметризованих завдань для курсу з програмування на Haskell-I/O та їх прави-
льних рішень. Автори вказують на наявні обмеження та недоліки: залежність від якості
генераторів специфікацій, які повинні бути надані викладачем, ризик створення не-
розв’язних завдань, а система генерації тестів стикається з проблемами застрягання при
пошуку тестів. Quiz-game DSL представлена в роботі [5] для створення вікторин/освітніх

 А. В. Хижняк, В. В. Казимир, 2025

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

262

ігор і дозволяє описати структуру вікторини: запитання, рівні складності, логіку, але сфо-
кусована лише на вікторинах – не підтримує складні сценарії, симуляції, інтеракції зі
складною логікою. У роботі [6] представлено генератор питань, який використовує вла-
сну легку вбудовану домен-специфічну мову для опису шаблонів питань, ключовою осо-
бливістю якої є можливість параметризації аспектів питань, визначення діапазонів їх зна-
чень та потенційних взаємодій чи залежностей між ними, що дозволяє генерувати цілі
родини схожих питань, але якість залежить від розробника, а не генератора. Сама мова
має дуже обмежений функціонал і підходить тільки для запитань з однією відповіддю в
рамках тільки однієї LMS.

Виділення недосліджених частин загальної проблеми. Незважаючи на доцільність
запропонованих рішень, вони мають низку концептуальних і технологічних обмежень їх
застосування для гнучкої генерації персоналізованих практичних завдань. Існуючі рі-
шення мають такі спільні обмеження, як: залежність від конкретної платформи, недоста-
тня підтримка формального опису логіки перевірки, орієнтація переважно на макрорі-
вень (курси, ресурси), а не мікрорівень (структура і зміст завдань), відсутність механізмів
адаптації до опису практичних завдань.

З погляду на це, дуже перспективним є створення доменно-специфічної мови, яка
забезпечить викладачів формальним і гнучким інструментом для створення персоналізо-
ваних практичних завдань, підтримуватиме контрольовану генерацію тексту завдання та
розгортання навчального середовища, міститиме правила для автоматичної перевірки
прогресу виконання завдання і може бути використана в сучасних інформаційних систе-
мах автоматизованої генерації та перевірки параметризованих практичних завдань [7].

Мета статті. Метою статті є опис формальної граматики доменно-орієнтованої мови
Learning Task Definition Language та представлення результатів її тестування.

Виклад основного матеріалу.
1. Опис домену персоналізованих практичних завдань.
Практичне завдання (task) направлене на розвиток або перевірку навичок студента з

певної теми. Для створення завдання треба розуміти, яка саме мета чи основна ідея за-
кладена у виконання цього завдання, а головне, яка ціль повинна бути досягнута під час
виконання завдання. Частіше за все ціллю має бути конкретний стан навчального сере-
довища або об’єкт, існування якого можна в подальшому перевірити.

Можлива ситуація, коли для досягнення загальної мети практичного завдання потрі-
бно виконати більше, ніж один етап (stage). Тоді для кожного етапу треба мати ціль, до-
сягнення якої підтверджує виконання етапу і яку можна перевірити. Етап може мати ок-
рему мету, а може бути кроком для досягнення основної. Кожен етап має свій створений
об’єкт, запущений процес або конкретний стан навчального середовища. Етапи можуть
бути залежними від інших етапів. Етапи, які повинні бути виконані послідовно і тільки в
певному порядку, для зручності варто згрупувати в окрему сутність – трек (track). Напри-
клад, для виконання задачі за допомогою програми на мові C студенти повинні написати
код програми, скомпілювати вихідні коди, запустити програму.

Параметризація дозволяє автоматично генерувати різні варіанти одного і того ж завдання,
змінюючи певні його елементи. Для цього треба виділити частини, які потребують персона-
лізації для кожного етапу: імена змінних, назви файлів або директорій, ім’я користувача, фу-
нкцій, порядок параметрів тощо. Таким чином, для кожного студента буде згенеровано уніка-
льне завдання, яке за дидактичною складністю не буде відрізнятися від завдань інших
студентів. Такі частини завдання іменуються параметризованими змінними (variables).

Важливою частиною завдання є метаінформація, яка може бути використана поза
межами самого завдання для розуміння, кому і коли це завдання можна видавати, скільки
часу орієнтовно повинно займати його виконання.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

263

Для виконання практичного завдання зазвичай треба розгортати окреме навчальне
середовище. Для розгортання навчального середовища потрібно створити Learning
Environment deployment instructions, за допомогою яких відповідний модуль системи
зможе розгорнути навчальне середовище. Ці інструкції поділяються на інструкції запу-
ску (create instructions) середовища та інструкції налаштування середовища (provision
instructions). У цих інструкціях використовуються додаткові параметри, які є персоналі-
зованими змінними для завдання. Також додатково вказується, який саме тип навчаль-
ного середовища треба запустити: який backend буде використовуватися, протокол дос-
тупу до навчального середовища та його параметри.

2. Розробка формальної граматики Learning Tasks Definition Language (LTDL).
Розробка LTDL здійснювалась згідно із принципів, закладених в [8, 9, 10, 11].
Формальною породжувальною граматикою (генеративною граматикою, граматикою

з фразовою структурою, граматикою з переписуванням) називають кортеж [12]:

G = (N, T, P, S),

де N – множина нетермiнальних символiв (нетермiналiв, змiнних);
T – множина термiнальних символiв (термiналiв, основних символiв);
N ∩ T = ∅; P – множина правил виведення (продукцiй, правил пiдстановки) {(α, β)};
S – початковий символ (стартовий символ, аксiома). Початковим символом є task.
Введемо алфавіт нетермінальних символів для опису сутностей персоналізованого

практичного завдання: TC – вміст завдання, LE – середовище навчання, LEC – його
вміст, CI – інструкції створення навчального середовища, PI – інструкції налаштування
навчального середовища, V – параметризована змінна, TR – послідовність етапів за-
вдання, TRC – вміст послідовності, ST – етап послідовності, STC – вміст етапу, I – ін-
струкція або дія, яку треба виконати в навчальному середовищі, A – сама дія, D – визна-
чення та опис завдання, C – перевірка та фіксування результатів етапу. Доповнимо
алфавіт допоміжними нетерміналами, які задають списки сутностей: VL, TRL, STL, DL,
CL, IL. Алфавіт термінальних символів складається з набору зарезервованих слів під ко-
жну сутність ("task", "learning_environment", "create_instructions", "provision_instructions",
"variable", "track", "stage", "instruction", "definition", "check"), знаків пунктуації ("=", "{",
"}", "[", "]", ":", ",", "$", ".") та загальної буквено-цифрової послідовності (string_literal).

Правила виведення граматики представлені у таблиці 1.

Таблиця 1 – Правила виведення граматики (синтаксис мови)

№ Правило Зміст правила

1 2 3

1 S → "task" string_literal ":" "{" TC "}" Створення сутності практичного завдання з іменем.

2 TC → LE | "stages" "=" "["STL"]"
| "tracks" "=" "["TRL"]"
| "variables" "=" "[" VL "]"

Завдання може складатися з опису навчального се-
редовища (НС) та списків: етапів, послідовностей
етапів, змінних.

3 LE → "learning_environment" string_literal ":"
"{" LEC "}"

Створення сутності НС з іменем.

4 LEC → VL | CI | PI НС складається зі списків: змінних, інструкцій
створення та налаштування.

5 CI → "create_instructions" "=" "[" IL "]" Створення списку інструкцій створення НС.

6 PI → "provision_instructions" "=" "[" IL "]" Створення списку інструкцій налаштування НС.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

264

Закінчення табл. 1
1 2 3

7 IL → I | I "," IL Список інструкцій може складатися з однієї ін-
струкції або списку інструкцій, розділених комою.

8 I → "instruction" string_literal ":" "{" A "}" Створення інструкції з іменем.

9 A → "action" "= " (string_literal | "$" | ".") Безпосередня дія, яка є послідовністю звичайних
символів або спеціальною послідовністю для інте-
рполяції значення змінної у вигляді: $scope.name.

10 TRL → TR | TR "," TRL Список послідовностей може складатися з однієї
послідовності або декількох послідовностей, роз-
ділених комою.

11 TR → "track" string_literal ":" "{" TRC "}" Створення послідовності з іменем.

12 TRC → "stages" "=" "[" STL "]" | "variables"
"=" "[" VL "]"

Послідовність складається зі списків: змінних та
етапів.

13 STL → ST | ST "," STL Список етапів може складатися з одного етапу або
декількох послідовностей, розділених комою.

14 ST → "stage" string_literal ":" "{" STC "}" Створення етапу з іменем.

15 STC → "variables" "=" "[" VL "]"
| "definitions" "=" "[" DL "]"
| "checks" "=" "["CL"]"
| "preconditions" "=" "[" IL "]"

Етап складається зі списків: змінних, визначень,
перевірок, інструкцій.

16 VL → V | V , VL Список змінних може складатися з однієї змінної
або декількох змінних, розділених комою.

17 V → "variable" string_literal ":" "{" "}" Створення змінної з іменем.

18 DL → D | D "," DL Список визначень може складатися з одного визна-
чення або декількох визначень, розділених комою.

19 D → "definition" string_literal ":" "{" "}" Створення визначення та опису з іменем.

20 CL → C | C "," CL Список перевірок може складатися з однієї переві-
рки або декількох перевірок, розділених комою.

21 C → "check" string_literal ":" "{" A "}" Створення перевірки з іменем.

Джерело: розроблено авторами.

Сутності персоналізованого практичного завдання представимо у таблиці 2 у вигляді
графічних зображень символів мови. Повний перелік параметрів елементів не виво-
диться у графічному представленні, окрім параметра name, який призначений для відо-
браження назви відповідного елементу.

Таблиця 2 – Графічні зображення символів алфавіту мови LTDL

Графічне представлення символу Сутність Опис
1 2 3

- task
Це основна сутність і початкове правило граматики;
включає в себе опис завдання, його метадані, змінні,
треки і етапи, опис навчального середовища.

variable

Задає параметризацію завдання для застосування у
темплейті або інструкції. Змінна може бути рівня
всього завдання, треку або етапу.

track

Використовується для групування етапів, які зале-
жать один від одного. Це лінійна послідовність ви-
конання кроків, складається зі змінних та етапів.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

265

Закінчення табл. 2
1 2 3

stage

Описує один із етапів виконання завдання і склада-
ється зі змінних, попередніх умов, опису та перевірок.
Попередні умови -– це список інструкцій, які треба
виконати в екземплярі навчального середовища,
перед тим як починається виконання завдання.

instruction

Описує дію, яка повинна бути виконана для запуску
індивідуального середовища або в ньому. Викорис-
товується в описі навчального середовища (learning
environment) та в попередніх умовах етапу (stage).

definition

Описує темплейт, який видається студенту перед
тим, як він почне виконувати завдання і описує, що
потрібно виконати в конкретному етапі (stage).

check

Задає дії, які треба виконати для відстежування ус-
пішності виконання конкретного етапу (stage). Ви-
конуються при підключенні до навчального сере-
довища, залежно від протоколу.

learning
environment

Опис навчального середовища, в якому буде вико-
нуватися завдання. Має параметри та інструкції по
запуску і налаштуванню конкретного екземпляра
навчального середовища.

include

Тип зв’язку, який встановлює вкладеність однієї
сутності в іншу – наприклад, етап є частиною треку.

depend

Тип зв’язку, який встановлює залежність етапів
один від одного.

use

Тип зв’язку, який показує, де буде використана па-
раметризована змінна.

Джерело: розроблено авторами.

Серед особливостей мови можна виділити наступні: відсутність лівої рекурсії, грама-
тика підходить для LL-парсингу, має структуровану ієрархію (task → tracks → stages →
preconditions/definitions/checks), підтримує інтерполяцію змінних через режими лексера, має
типізовані значення, лексер використовує стек режимів для обробки рядків. Граматика до-
зволяє описувати складні навчальні сценарії із залежностями, перевірками та параметриза-
цією через змінні. Для опису елементів домену було обрано синтаксис у вигляді патерну:

[модифікатори] ключове_слово ім'я [параметри] { тіло }.

Подібна структура використовується для опису сутностей у багатьох мовах програму-
вання та конфігураційних мовах. Переваги цього патерну в тому, що він легко читається
людьми, зручний для парсингу, дає чітку структуру для автоматичної генерації, дозволяє
легко розширювати синтаксис модифікаторами та параметрами.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

266

3. Тестування та оцінювання LTDL.
Для тестування створеної граматики та згенерованих лексичного та синтаксичного

аналізатора було створено та проведено наступні тести: парсинг тести, лексичне тесту-
вання, тестування генерації коду, побудова синтаксичного дерева, визначення непродук-
тивних та недосяжних символів.

У межах тестування парсингу за допомогою мови Python створені парсинг тести на
валідні конструкції та неправильний синтаксис. Для лексичного тестування граматики
було проведено тестування токенізації, тести на спеціальні символи, граничні випадки,
порожні файли, зайві пробіли та довгі вирази.

Для побудови дерева виводу граматики було виконано вивід завдання, в якому є па-
раметризовані змінні, треки зі вкладеннями етапів та окремі етапи з перевірочною дією.
Опис цього завдання представлено в лістингу 1.

task "complex_task": {
 variables = [variable "topvar1": {
 type = "RandomString" }]
 tracks = [track "t1": {
 stages = [stage "stage1": {
 checks = [check "check1": {action = "a1" }]},
 stage "stage2": {

checks = [check "check2": {action = "a2"}]}]}]
Лістинг. 1. Опис практичного завдання з кількома етапами

Джерело: власна розробка.

У результаті синтаксичного та лексичного аналізу побудовано дерево виводу, пред-
ставлене на рис. 1.

Рис. 1. Дерево виводу опису практичного завдання з кількома етапами

Джерело: власна розробка.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

267

Окремим, але важливим елементом практичного завдання є опис навчального сере-
довища, тому для нього теж було побудовано синтаксичне дерево. Для прикладу було
створено опис навчального середовища, яке являє собою віртуальну машину, запущену
за допомогою гіпервізора VirtualBox. Для налаштування середовища описані інструкції,
які створюють користувача і задають йому пароль. Опис навчального середовища пред-
ставлено в лістингу 2.

task "just_le" : { learning_environment "main": {
 variables = [variable "login: {type = "RandomString" },
 variable "pass: {type = "RandomString" }]

create_instructions = [
 instruction "startvm": {

 action = "VBoxManage startvm"}]
provision_instructions = [

instruction "create_user": {
 action = "create user ${main_le.login}"},
 instruction "set_password": {

action = "echo ${main_le.login} | passwd ${main_le.pass}" }]}}
Лістинг 2. Опис навчального середовища з кількома інструкціями

Джерело: власна розробка.

У результаті синтаксичного та лексичного аналізу побудовано дерево виводу, яке
представлене на рис. 2.

Рис. 2. Дерево виводу опису навчального середовища з кількома інструкціями

за допомогою LTDL
Джерело: власна розробка.

Використовуючи алгоритми тестування граматики, які наведені у монографії [13],
було проведено визначення непродуктивних та недосяжних символів. Символ A є про-
дуктивним, якщо існує вивід A ⇒* w, де w – рядок термінальних символів. Символ A є
непродуктивним, якщо не існує виводу A ⇒* w для жодного рядка w, що складається
лише з термінальних символів.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

268

Після повного аналізу граматики виявляється, що множина непродуктивних симво-
лів є пустою множиною, і всі нетермінальні символи можуть вивести термінальні рядки.
Це досягається завдяки:

1) Використанню оператора * для опціональних повторень;
2) Наявності альтернативних правил виводу;
3) Правильній структурі граматики без циклічних залежностей;
4) Можливості виводу мінімальних конструкцій для кожного правила.
Символ A є досяжним, якщо існує вивід S ⇒* αAβ, де S – стартовий символ, α і β –

довільні рядки символів.
Символ A є недосяжним, якщо не існує виводу S ⇒* αAβ для жодних α і β.
Граматика LTDL не містить недосяжних символів. Усі нетермінальні символи мо-

жуть бути досягнуті від стартового символа task через певну послідовність виводів.
Ключові особливості, які забезпечують досяжність всіх символів:
 Ієрархічна структура – граматика побудована як дерево з чітким корінням (task);
 Центральне правило – аксіома, що об’єднує всі основні блоки граматики;
 Взаємозв’язки – всі структури пов’язані через правила виводу;
 Відсутність ізольованих правил – немає правил, що не використовуються.
Це означає, що граматика не містить зайвих символів та всі визначені правила мають

практичне застосування і можуть бути досягнуті під час парсингу.

4. Приклад представлення персоналізованого практичного завдання мовою

LTDL.
Для демонстрації можливостей мови зроблений опис прикладу персоналізованого

практичного завдання за допомогою LTDL нотації та графічним способом. У якості при-
кладу створимо завдання для вивчення команд роботи з файлами та директоріями в ОС
на базі ядра Linux. У цьому завданні пропонується знайти файл, який містить наперед
заданий текст, і скопіювати його в директорію. Перед тим, як копіювати знайдений файл,
треба створити цільову директорію. Для ускладнення завдання і внесення елементів гей-
міфікації через пошук і усунення першопричини проблеми додаємо в файлову систему
паразитний файл із таким самим іменем, як цільова директорія, що унеможливлює її
створення. Отже, у завданні буде 4 етапи, розбиті на 2 треки, які можна почати викону-
вати паралельно, але є взаємозалежність: 1) перш ніж, як скопіювати файл, його треба
знайти та створити директорію, 2) перш ніж, як створити директорію, треба видалити
паразитний файл.

Також треба задати 3 параметризовані змінні – змінна “pattern” рівня етапу
“find_file”, яка буде використовуватися тільки в цьому етапі, змінна “file_name” рівня
треку, яка буде використовуватися в обох етапах треку, і змінна “dir_name” рівня за-
вдання, яка буде використовуватися в етапах обох треків. На цьому прикладі можна про-
демонструвати випадки, коли етап не містить опису завдання (етап створення паразит-
ного файлу), але містить перевірочні інструкції. Таким чином студент повинен зрозуміти
наявність перепони й усунути її, а результат виконання цієї дії повинен бути зафіксова-
ний в фінальному звіті про виконання завдання. Натомість етап створення файлу зі зге-
нерованим текстом, який студент повинен знайти, не містить перевірочних умов, оскі-
льки в результаті виконання цього етапу потрібний файл повинен опинитися в цільовій
директорії, що і буде успішним виконанням цього етапу. Тільки так можна зрозуміти,
що файл був знайдений. Іноді буває так, що правильні команди виконані, але студент не
розібрався з результатом роботи команди.

Для спрощення сприйняття та можливості охоплення усіх аспектів розробленого пер-
соналізованого практичного завдання авторами пропонується можливість графічного
представлення елементів завдання. На рис. 3 показано, як наведений вище приклад візуа-
лізується за допомогою графічного варіанту мови.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

269

Рис. 3. Приклад представлення персоналізованого практичного завдання

графічним варіантом мови LTDL
Джерело: власна розробка.
Висновки. У дослідженні вперше запропоновано формальну доменно-специфічну

мову Learning Task Definition Language (LTDL), яка, на відміну від існуючих DSL-рішень,
фокусується на мікрорівні завдань, глибокій параметризації, описі структури, залежнос-
тей, розгортанні навчальних середовищ та гнучких перевірках. Розроблена мова може по-
єднуватися з генеративними AI-системами для контрольованого процесу автоматичної ге-
нерації персоналізованих практичних завдань для інженерних спеціальностей.

Розроблена формальна граматика мови, проведене тестування створеної граматики
та згенерованих лексичного та синтаксичного аналізатора, розроблене графічне предста-
влення мови. Графічне представлення мови дозволяє викладачам охопити всі аспекти
персоналізованого практичного завдання та спрощує його огляд та аналіз.

Подальші дослідження будуть спрямовані на:
1) інтеграцію LTDL у навчальні платформи та розробку методів оцінки ефективності

застосування мови у реальних освітніх сценаріях;
2) підтримку конкретних рівнів персоналізації практичних завдань [14];
3) дослідження інтеграції LTDL з генеративними моделями для контрольованої ав-

томатизації;
4) створення комбінованого підходу до персоналізації навчання завдяки поєднанню пе-

реваг формальної мови (структурованість, перевірюваність) та можливостей AI (масштабо-
ваність, варіативність).

Заява про використання генеративного ШІ та технологій на основі ШІ
в процесі написання тексту статті

Автори використали ШІ (Chat GPT) для покращення читабельності та виправлення
стилістичних і граматичних помилок у цій статті. Після використання цього інструменту
автори переглянули та відредагували зміст за потреби і взяли на себе повну відповідаль-
ність за зміст публікації.

Список використаних джерел
1. Liang, Percy & Jordan, Michael & Klein, Dan. (2010). Learning Programs: A Hierarchical Bayesian

Approach. Proceedings of the 27th International Conference on Machine Learning (ICML-10), 639-646.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

270

2. Jiménez, David & Guerrero, Ana-Elena & Prieto-Blazquez, Josep & Conesa, Jordi. (2014). A
domain-specific language for Virtual Classrooms. International Journal of Metadata Semantics and
Ontologies, 9, 312-323. https://doi.org/10.1504/IJMSO.2014.065444.

3. Westphal, Oliver. (2020). A Framework for Generating Diverse Haskell-IO Exercise Tasks. Pre-
proceedings of the 28th International Workshop on Functional and Logic Programming (WFLP 2020)
https://doi.org/10.48550/arXiv.2008.12751.

4. Westphal, Oliver & Voigtländer, Janis. (2020). Describing Console I/O Behavior for Testing
Student Submissions in Haskell. Electronic Proceedings in Theoretical Computer Science,321, 19-36.
https://doi.org/10.4204/EPTCS.321.2.

5. González García, Cristian & Núñez Valdez, Edward & Moreno Ger, Pablo & Gonzalez Crespo,
Ruben & Pelayo García-Bustelo, B. & Cueva Lovelle, Juan. (2019). Agile development of quiz-based
multiplatform educational games using a Domain-Specific Language. Universal Access in the
Information Society. IP. 1-20. https://doi.org/10.1007/s10209-019-00681-y.

6. Willert, N., Thiemann, J. Template-Based Generator for Single-Choice Questions. (2024). Tech
Know Learn, 29, 355-370. https://doi.org/10.1007/s10758-023-09659-5.

7. Хижняк, А.В., & Пріла, О.А. (2025). Розробка системи автоматизованої генерації та пере-
вірки параметризованих практичних завдань. Технічні науки та технології, (2 (40), 221-233.
https://doi.org/10.25140/2411-5363-2025-2(40)-221-233.

8. Wasowski, A., & Berger, T. (2023). Domain-Specific Languages: Effective Modeling, Automation,
and Reuse. Springer.

9. Ramos-Díaz, J. G., Navarro, I., Silva, J., & Arroyo, G. (2012). Defining DSL design principles
for enhancing the requirements elicitation process. Acta Universitaria, 22, 126-133. https://doi.org/
10.15174/au.2012.352.

10. Strembeck, M., & Zdun, U. (2009). An Approach for the Systematic Development of Domain-
Specific Languages. Software: Practice and Experience (SP&E), 39(15), 1253-1292. http://dx.doi.org/
10.1002/spe.936.

11. Mernik M., Heering J., Sloane A.M. (2005). When and how to develop domain-specific
languages. ACM Computing Surveys. http://dx.doi.org/10.1145/1118890.1118892.

12. Стативка, Ю. І. (2023). Формальні мови. Основнi концепти i представлення. КПІ
ім. Ігоря Сікорського. https://ela.kpi.ua/items/5f179fe8-05de-4b23-9563-13fd4d24e37e.

13. Гавриленко С.Ю. (2021). Формальні мови, граматики та автомати. НТУ ХПІ. https://repository.
kpi.kharkov.ua/server/api/core/bitstreams/5847efdd-6ff5-4f7f-9de8-6f6555ad4cc0/content.

14. Хижняк, А., & Казимир, В. (2025). Узагальнена класифікація рівнів персоналізації прак-
тичних завдань в іт- освіті. Наука і техніка сьогодні, (7(48)). https://doi.org/10.52058/2786-6025-
2025-7(48)-1932-1949.

References

1. Liang, Percy & Jordan, Michael & Klein, Dan. (2010). Learning Programs: A Hierarchical Bayesian
Approach. Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 639-646.

2. Jiménez, David & Guerrero, Ana-Elena & Prieto-Blazquez, Josep & Conesa, Jordi. (2014). A
domain-specific language for Virtual Classrooms. International Journal of Metadata Semantics and
Ontologies. 9. pp. 312-323. DOI: https://doi.org/10.1504/IJMSO.2014.065444.

3. Westphal, Oliver. (2020). A Framework for Generating Diverse Haskell-IO Exercise Tasks. Pre-
proceedings of the 28th International Workshop on Functional and Logic Programming (WFLP 2020)
DOI: https://doi.org/10.48550/arXiv.2008.12751.

4. Westphal, Oliver & Voigtländer, Janis. (2020). Describing Console I/O Behavior for Testing Stu-
dent Submissions in Haskell. Electronic Proceedings in Theoretical Computer Science. 321. 19-36.
DOI: https://doi.org/10.4204/EPTCS.321.2.

5. González García, Cristian & Núñez Valdez, Edward & Moreno Ger, Pablo & Gonzalez Crespo,
Ruben & Pelayo García-Bustelo, B. & Cueva Lovelle, Juan. (2019). Agile development of quiz-based
multiplatform educational games using a Domain-Specific Language. Universal Access in the Infor-
mation Society. IP. 1-20. DOI: https://doi.org/10.1007/s10209-019-00681-y.

6. Willert, N., Thiemann, J. Template-Based Generator for Single-Choice Questions. (2024). Tech
Know Learn 29, 355-370. DOI: https://doi.org/10.1007/s10758-023-09659-5.

ТЕХНІЧНІ НАУКИ ТА ТЕХНОЛОГІЇ № 3(41), 2025

TECHNICAL SCIENCES AND TECHNOLOGIES

271

7. Khyzhniak A.V., Prila O.A. Rozrobka systemy avtomatyzovanoi heneratsii ta perevirky para-
metryzovanykh praktychnykh zavdan. [Designing a system for automated generation and automated assess-
ment of parameterized practical assignments.] Tekhnichni nauky ta tekhnolohii - Technical sciences and tech-
nologies, Vol.2 (40), 2025. pp.221-233. DOI: https://doi.org/10.25140/2411-5363-2025-2(40)-221-233.

8. Wasowski, A., & Berger, T. (2023). Domain-Specific Languages: Effective Modeling, Automa-
tion, and Reuse. Springer.

9. Ramos-Díaz, J. G., Navarro, I., Silva, J., & Arroyo, G. (2012). Defining DSL design principles for
enhancing the requirements elicitation process. Acta Universitaria, 22, pp. 126-133. DOI: https://doi.org/
10.15174/au.2012.352.

10. Strembeck, M., & Zdun, U. (2009). An Approach for the Systematic Development of Domain-Spe-
cific Languages. Software: Practice and Experience (SP&E), 39(15), pp. 1253-1292. DOI: http://dx.doi.org/
10.1002/spe.936.

11. Mernik M., Heering J., Sloane A.M. (2005). When and how to develop domain-specific lan-
guages. ACM Computing Surveys. DOI: http://dx.doi.org/10.1145/1118890.1118892.

12. Statyvka, Y. I. Formalni movy. Osnovni kontsepty i predstavlennia. [Formal language. Basic
concepts and representations.] KPI im. Ihoria Sikorskoho – Kyiv Polytechnic Institute named after Ihor
Sikorskyi – Available from: https://ela.kpi.ua/items/5f179fe8-05de-4b23-9563-13fd4d24e37e.

13. Havrylenko S.Y. (2021). Formalni movy, hramatyky ta avtomaty. [Formal Languages, Gram-
mars, and Automata.] Textbook. Kharkiv: NTU KhPI. – 133 p. –Available from: https://reposi-
tory.kpi.kharkov.ua/server/api/core/bitstreams/5847efdd-6ff5-4f7f-9de8-6f6555ad4cc0/content.

14. Khyzhniak A.V., Kazymyr V.V. Uzahalnena klasyfikatsiia rivniv personalizatsii praktychnykh
zavdan v it- osviti. [A generalized classification of personalization levels in practical assignments for
IT-education.] Nauka i tehnica syogodni – Science and technology today, 7(48), 2025. pp.1932-1949.
DOI: https://doi.org/10.52058/2786-6025-2025-7(48)-1932-1949. – Available from http://perspec-
tives.pp.ua/index.php/nts/article/view/26982/26951.

Отримано 08.09.2025

UDC 004.42:37.091.3:378.018.43

Andrii Khyzhniak1, Volodymyr Kazymyr2

1PhD Student, Senior Lecturer at Information and Computer Systems Department
Chernihiv Polytechnic National University (Chernihiv, Ukraine)

E-mail: alf.andrey@gmail.com. ORCID: http://orcid.org/0009-0008-8655-3736

2Doctor of Sciences, Professor, Professor of the Department of Information and Computer Systems
Chernihiv Polytechnic National University (Chernihiv, Ukraine)

E-mail: vvkazymyr@gmail.com. ORCID: https://orcid.org/0000-0001-8163-1119. ResearcherID: Q-2925-2016

A DOMAIN-SPECIFIC LANGUAGE FOR DESCRIBING PERSONALIZED
PRACTICAL TASKS IN ENGINEERING EDUCATION

In contemporary education, there is a growing demand for scalable and personalized tools that can automate practical
task creation, while preserving academic integrity.

An analysis of recent studies has shown that existing domain-specific languages (DSLs) used in an educational context
have a number of limitations, are mostly focused on the macro level (courses, virtual classrooms, quizzes), and do not provide
a formalized and flexible description of practical tasks at the micro level.

This article presents Learning Task Definition Language (LTDL) for the first time – a formal DSL designed to describe
the structure of practical tasks and the stages of their implementation. The proposed language has a specific focus on the micro
level of tasks, deep parameterization, description of learning environments, automatic generation, and flexible verification.
LTDL supports both textual and graphical representations of tasks, which increases its usability for teachers and the possibility
of integration with automatic deployment and verification systems.

Testing results demonstrate the correctness of LTDL grammar, the absence of unproductive and unreachable symbols,
and the language's ability to model complex scenarios. The novelty of the research lies in the creation of a flexible formal tool
that can combine task personalization with controlled generation of text instructions, automated deployment of learning envi-
ronments, and rules for checking their progress. LTDL can be integrated into modern information systems for automated gen-
eration and evaluation of parameterized practical tasks.

Keywords: practical assignments; automated generation; automated assessment; personalized learning; formal gram-
mar; domain-specific language.

Fig.: 3. Table: 2. References: 14.

Хижняк А. В., Казимир В. В. Доменно-орієнтована мова опису персоналізованих практичних завдань для інженерних спеціальностей.
Технічні науки та технології, 2025. № 3(41). С. 261-271. DOI: https://doi.org/10.25140/2411-5363-2025-3(41)-261-271.

