Voіtenko Volodymyr, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Fedorova Oksana, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Yershov Roman, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Language: ukrainian


Methods to record bio-potentials generated by the brain, heart and muscles have two main application aspects: one in medicine and another one in research. Medical diagnostics in hospital conditions is currently mainly based on non-invasive research methods that use bulky and expensive equipment. At the same time, autonomous control and current monitoring of the human state remains an important problem from two perspectives: to timely identify critical conditions and to detect the reaction to specific impacts. This article seeks to develop a research complex that would contain devices for a preliminary processing of bioelectric signals, their transformation into digital form and their input to a personal computer. These signals will then be used to analyze and process the functioning algorithms of a portable autonomous electronic system under development.

Key words:

bioelectric signals, bio-potential, analog-digital converter, visualization


1. Sörnmo, Laguna, L. P.  (2005). Bioelectrical Signal Processing in Cardiac and Neurological ApplicationsElsevier, 688 p.

2. Petrenas, A., Marozas, V., Sörnmo, L. & Lukosevicius, A. (2012). An Echo State Neural Network for QRST Cancellation During Atrial Fibrillation. IEEE Trans. on Biomedical Engineering, vol. 59, no. 10, pp. 2950–2955.

3. Gil, E., Laguna, P., Mart´ınez, J.P., Barquero-Pe´rez, O., Garc´ıa-Alberola, A. & Sörnmo, L.(2013). Heart Rate Turbulence Analysis Based on Photoplethysmography. IEEE Trans. on Biomedical Engineeringvol. 60, no. 1, pp. 3149–3155.

4. SandbergF., Bailon, R.Hernando, D., Laguna, P., Martınez, J.P., Solem, K. & SörnmoL. (2013). Prediction of Intradialytic Hypotension using PPG and ECG. Computing in Cardiology,vol. 40, pp. 1227–1230.

5. Behjat, H.Van De Ville, D. & Leonardi, N. (2013). Statistical Parametric Mapping of Functional MRI Data Using Wavelets Adapted to the Cerebral CortexProceedings of the 10th IEEE International Symposium on Biomedical ImagingFrom Nano to Macro (USA, San Francisco, April 7–11, 2013), pp. 1070–1073.

6. Vetvitckii, E. V. (2000). Tcifrovoi kompleks dlia EEG issledovanii [A digital system for EEG studies]. Candidates thesis. Moscow, p. 112 (in Russian).

7. Ebersole, J. Pedley, T. (2003). Current Practice of Clinical ElectroencephalographyNew York: Lippincott, p. 974

8.Zenkov, L. R. (2011). Klinicheskaia elektroentcefalografiia (s elementami epileptologii). Rukovodstvo dlia vrachei [Clinical Electroencephalography (with Epileptology elements). Guidelines for doctors]Moscow: MEDpress-inform, p. 368 (in Russian).

9. Zhadin, M. N. (1984). Biofizicheskie osnovy formirovaniia elektroentcefalogrammy [Biophysical basis for the formation of the electroencephalogram]. Moscow: Nauka, p. 198 (in Russian).

10. Shagas, Ch. (1975). Vyzvannye potentcialy mozga v norme i patologii [Evoked potentials of the brain in normal and pathological condition]. Moscow: Mir, p. 318 (in Russian).

11. Rutman, E. M. (1979). Vyzvannye potentcialy v psikhologii i psikhofiziologii [Evoked potentials in Psychology and Psychophysiology]. Moscow: Nauka, p. 642 (in Russian).

12.Ebept, G.-Kh. (2010). Prostoi analiz EKG [Simple analysis of ECG]. Moscow: Logosfepa, p. 283 (in Russian).

13. Kolomietc, S. N. (2012). Vvedenie v EKG [Introduction to ECG]. Odessa: ONMU, р. 84 (in Russian).

14. Nikolaev, S. G. (2003). Praktikum po klinicheskoi elektromiografii [Workshop on Clinical electromyography]. Ivanovo: Gosudarstv. med. akademiia, p. 260 (in Russian).

15. ADS129x Low-Power, 8-Channel, 24-Bit Analog Front-End for Bio-potential Measurements (Rev. K). Texas Instruments production data SBAS459K, 2010 (rev. August 2015).

16.LPC2148 Education Board. User’s Guide. – Embedded Artists AB, 2007.