THE CRISIS IN THE SIMULATION TECHNOLOGY OF POPULATION PROCESSES AND OPTIONS FOR ITS CORRECTION

Author:

Dubrovskaia Victoria, St. Petersburg Institute for Informatics and Automation of RAS (39, 14-line Str., 199178 Saint-Petersburg, Russia)

Perevaryukha Andrey, St. Petersburg Institute for Informatics and Automation of RAS (39, 14-line Str., 199178 Saint-Petersburg, Russia)

Soloveva Inna, St. Petersburg Institute for Informatics and Automation of RAS (39, 14-line Str., 199178 Saint-Petersburg, Russia)

Language: russian

Annotation:

The article by comparing the actual situation with the possible modes of behavior known population models from observational data identified a number of inconsistencies that can not be removed by a simple redefinition of the parameters. The origin of cycles of periods 2 degree at doubling bifurcation involves a fundamentally different points of the tab order than the pronounced cycles of Arctic populations. We observed flashes aperiodic dynamics of insect pests differs from the well-known scenario of chaos, which in addition to Cantor attractor involves a number of additional properties in the motion path that is difficult to interpret in biology. It is proposed to achieve the quality of conformity carried out the implementation of the price explainable nonlinear effects with the use of trigger functional. Accounting for seemingly minor factor, which is expressed in an additional point of inflection reproduction can lead to other conclusions about the properties of population dynamics. Analysis of catch statistics for the models must take into account the presence of subpopulation groups. Influence of reproductive isolation of local groups discussed the example of these spawning odd / even flocks of pink salmon populations and for the Caspian Sea russian and persian sturgeon Acipenser persicus.

Key words:

population models, cycles, bifurcation, Allee effect, reproductive isolation, fish subpopulations

References:

1. Tutubalin, V. N. et al. (1999). Matematicheskoe modelirovanie v ekologii: istoriko-metodologicheskii analiz [Mathematical modeling in ecology: historical and methodological analysis]. Moscow: Iazyki russkoi kultury, 208 p. (in Russian).

2. Costantino, R. F. et al. (1995). Experimentally induced transitions in the dynamic behavior of insect populations. Nature, vol. 375, pp. 227–230.

3. Kontorin, V. V. (1980). Matematicheskoe modelirovanie populiatcii baikalskogo omulia [Mathematical modeling of the population of Baikal omul]. Moscow, 208 p. (in Russian).

4. Mikhailov, V. V., Reshetnikov, Iu. S. (1985). Imitatcionnaia model rybnoi chasti soobshchestva ozera Sevan [A simulation model of fish communities of Lake Sevan]. Problemy avtomatizatcii nauchnykh i proizvodstvennykh protcessov – Problems of automation of scientific and production processes.Leningrad: Nauka, pp. 56–61(in Russian).

5. Bobyrev, A. E. et al. (2013). Dolgoperiodnye endogennye kolebaniia chislennosti populiatcii ryb. Matematicheskoe modelirovanie [Long-period oscillations in fish population size. Mathematical modeling]. Biofizika – BiophysicMoscowvol. 58, no. 2, pp. 334–348 (in Russian).

6. Riker, U. E. (1979). Metody otcenki i interpretatciia biologicheskikh pokazatelei populiatcii ryb [Computation and interpretation of biological statistics of fish populations]. MoscowPishchevaia promyshlennost – Food Industry, 408 p. (in Russian).

7. Ricker, W. E. (1979). Two mechanisms that make it impossible to maintain peak period yields from stocks of Pacific salmon and other fishes . Journal of the Fisheries Research Board of Canada, vol. 30, pp.1275–1286.

8. Perevariukha, A. Iu. (2012). Nelineinye effekty i problemy interpretatcii v modelirovanii upravliaemykh biologicheskikh protcessov [Nonlinear effects and interpretation problem in the modeling of controlled biological processes]. Tekhnicheskie nauki i tekhnologii – Technical sciences and technologies, no 3, pp. 166–176 (in Russian).

9. May, R. M. (1973). Qualitative Stability in Model Ecosystems. Ecology, vol. 54, pp. 638–641.

10. Krebs, C. J., Myers, J. H. (1974).  Population Cycles in Small Mammals. Advances in Ecological Research, vol. 8, pp. 267–399.

11. Clark, L. R. (1964). The population dynamics of Cardiaspina albitextura (Psyllidae). Australian Journal of Zoology, vol. 12, no. 3, pp. 362–380.

12. Grishin, V. N. (2008). Sovremennye problemy presnovodnoi akvakultury [Current problems of freshwater aquaculture]. Moscow: RUDN, 138 p. (in Russian).

13. Singer, D. (1978). Stable orbits and bifurcations of the maps on the interval. SIAM journal of applied math, vol. 35, pp. 260–268.

14. Zhuravlev, V. B. (2012). K metodike izucheniia chislennosti populiatcii redkikh i ischezaiushchikh vidov ryb [To the technique of study in the number of populations of rare and extinct species]. Vestnik Novosibirskogo gosudarstvennogo agrarnogo universiteta – Bulletin of NSAU (Novosibirsk state agrarian university), vol. 2, no. 23, pp. 20–27 (in Russian).

15. Feldman, M. G., Shevliakov, E. A., Zorbidi, Zh. Kh (2014). Prognozirovanie podkhodov lososevykh (na primere kizhucha zapadnoi Kamchatki) s ispolzovaniem modelei ekstrapoliatcii vremennykh riadov i modelei “zapas-popolnenie” [Forecasting the runs of pacific salmon (for example – a coho salmon of the Western Kamchatka) on the base of “stock– recruitment” models and time series extrapolation simulations]. Issledovaniia vodnykh biologicheskikh resursov Kamchatki i severo-zapadnoi chasti Tikhogo okeana – The researches of the aquatic biological resources of Kamchatka and of the north-west part of the Pacific Oceanno. 34, pp. 87–106 (in Russian).

16. Sheperd, J.G. (1982). A versatile new stock-recruitment relationship for fisheries and the construction of sustainable yield curves. J. Cons. Intern. Explor. Mer., vol. 40, pp. 67–75.

17. Collet, P., Eckmann, J.,  Lansford, O. E. (1980).  Universal properties of maps of an interval. Gomm. Math. Phys., vol. 76, no. 3, pp. 211–254.

18. Sheludko, A. S., Shiriaev, V. I. (2015). Algoritm garantirovannogo otcenivaniia parametra odnomernogo khaoticheskogo otobrazheniia [The Algorithm of Guaranteed Parameter Estimation for One-Dimensional Chaotic Map]. Informatcionnye tekhnologii – Information technologies, no. 1, pp. 30–34 (in Russian).

19. Aarde, van R. J. et al. (1999). Culling and the dynamics of the Kruger National Park African elephant population. Animal Conservation, vol. 2, pp. 287–294.

Download