THE DESCRIPTION OF ACOUSTIC RADIATION ENERGY DURING THE CHANGE OF PROPERTIES OF MACHINED COMPOSITE MATERIAL

Author:

Filonenko Sergey, National Aviation University (1 Kosmonavta Komarova Av., 03068 Kyiv, Ukraine)

Language: russian

Annotation:

The analysis of acoustic emission energy parameters is conducted depending on properties of composite material machining for thermoactivative model of surface layer destruction. Are determined and are described of regularity change of acoustic emission energy parameters at ascending parameter describing property of composite material. Is showed, that the greatest sensitivity to change of composite material properties there is dispersion of acoustic emission resultant signal average level of energy.

Key words:

acoustic emission, composite material, resultant signal, thermoactivative model, energy parameters, machining

References:

  1. Teti, R. (2015). Advanced IT Methods of Signal Processing and Decision Making for Zero Defect Manufacturing in

Machining. Procedia CIRP, vol. 28, pp. 3–15.

  1. Mukhopadhyay, C. K., Jayakumar, T., Raj, B., Venugopal, S. (2012). Statistical analysis of acoustic emission signals generated during turning of a metal matrix composite. J. of the Braz. Soc. of Mech. Sci. and Eng., vol. XXXIV, no. 2, pp. 145–154.

  2. Ren, Q., Balazinski, M., Baron, L. (2012). High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. Int. J. Adv. Manuf .Technol, vol. 63, pp. 10571063.

  3. Prakash, M., Kanthababu, M., Gowri, S., Balasubramaniam, R., Jegaraj, J.R. (2014). Tool Condition Monitoring using Multiple Sensors Approach in the Micro end milling of Aluminium Alloy (AA1100). Manufacturing Technology: Proceedings of the 5-th Int. and 26-th All India Design and Research Conference (December 12–14, 2014, IIT Guwahati, Assam, India), pp. 394–1–394–6.

  4. Fadare, D. A., Sales, W. F., Bonney, J., Ezugwu, E. O. (2012). Influence of cutting parameters and tool wear on acoustic emission signal in high-speed turning of Ti-6Al-4V alloy. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), vol. 3 (3),pp. 547–555.

  5. Thepsonthi, T. (2014). Modeling and optimization of micro-end milling process for micro-manufacturing. A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey, pp. 246.

  6. Giriraj, B. (2012). Prediction of progressive tool wear using acoustic emission technique and artificial neural network. Journal of Civil Engineering Science: An International Journal, vol. 1, no. 1–2, pp. 43–46 [in English].

  7. Mcleay, T., Turner, M. S. (2011).  Failure mode analysis to define process monitoring systemsJournal of machine engineering, vol. 11, no. 4, pp.  118–129.

  8. Rajakumari, P. T. (2013). Online monitoring of drilling carbon fiber reinforced polymeric nanocomposite laminates using acoustic emission technique. A thesis submitted by in partial fulfillment for the requirement of award of the degree of doctor of philosophy facultyof mechanical engineering (Anna University, Chennai), 171 p.

  9. Andoh, P. Y.Davis, F., Owusu-Ofori, S. (2010). Development of a control strategy for monitoring the delaminating damage in drilling of carbon composite laminates. Journal of Science and Technology, vol. 30, no.2. – pp. 142–156.

  10. Filonenko, S., Nimchenko, T. (2015) Simulation of acoustic emission in composite material machining with regard to its physical and mechanical . Visnyk of Chernihiv State Technological University, no 2 (7), pp. 44–50 (in English).

  11. Filonenko, S. F. (2015). Vliianie svoistv obrabatyvaemogo kompozitcionnogo materiala na akusticheskuiu emissiiu [Impact of processed composite material properties on the acoustic emission]. Vostochno-evropeiskii zhurnal peredovykh tekhnologii - Eastern-European Journal of Eenterprise Technologies, vol. 2, no. 5 (74), pp. 60–64 (in Russian).

  12. Filonenko, S. F. (2015). Vliianie svoistv obrabatyvaemogo kompozitcionnogo materiala na energeticheskie parametry akusticheskoi emissii [Impact of the processed composite material properties on the energy parameters of acoustic emission]. Visnyk inzhenernoi akademii Ukrainy – Bulletin of engineering academy of Ukraine, no 4, pp. 187–192 (in Russian).

Download