FUNCTIONAL STRATIFICATION OF THE UNMANNED AVIATION VEHICLES CONTROL SYSTEM’S STRUCTURES

Author:

Nesterenko Sergiy, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Akymenko Andrii, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Нerasymenko Oksana, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Kamak Yuri, State scientifically-proof-of-concept center of Armed forces of Ukraine, Chernihiv, Ukraine

Gerashchenko Maksim, State scientifically-proof-of-concept center of Armed forces of Ukraine, Chernihiv, Ukraine

Language: ukrainian

Annotation:

The existing structures of modern control systems of unmanned aviation mini and micro systems (MUAS) correspond it’s methods of practical use that have become typical at this time. However, the growing requirements of autonomy and efficiency of their operation require the further expansion of the functional structure MUAS. The work describes the extended functional structure of the control system, which is obtained by introducing additional intellectual level to the existing levels of semi-automatic and manual MUAS control. The lists of possible standard operations (commands) at each level of the proposed functional structure are given as well.

Key words:

unmanned aviation systems, control systems, functional stratification

References:

1. Herlik, E. (2010). Unmanned Aerial Vehicles (UAVs) for commercial applications global market & technologies outlook 2011–2016. Technical report, Market Intrel Group LLC.

2. Biletskyi, I. H., Andronov, V. V. (2010). Osoblyvosti zastosuvannia bezpilotnoi rozviduvalnoi aviatsii v suchasnykh voiennykh konfliktakh [Features of the application of unmanned reconnaissance aircraft in modern military conflicts]. Nauka i tekhnika Povitrianykh Syl Zbroinykh Syl Ukrainy – Science and Technology of the Air Force of Ukraine, no. 1 (3), pp. 79-85 (in Ukrainian).

3. Pashchuk, Yu. M., Salnyk, Yu. P. (2015). Taktychni bezpilotni aviatsiini kompleksy: mozhlyvosti ta obmezhennia u zastosuvanni [Tactical unmanned aircraft systems: the capabilities and limitations in the application]. Nauka i tekhnika Povitrianykh Syl Zbroinykh Syl Ukrainy. – Science and Technology of the Air Force of Ukraine, no. 1 (18), pp. 23–28 (in Ukrainian).

4. Gat, E.(1998). On Three-Layer Architectures. Artificial intelligence and mobile robots. MIT Press, Cambridge, MA, USA, pp. 195–210.

5. Albus,Jet al. (2002). 4D/RCS: A Reference Model Architecture For Unmanned Vehicle Systems. Version 2.2. NISTIR 6910, National Institute of Standards and Technology, Gaithersburg, MD.

6. Doherty, Р., Kvarnstrom, J., Wzorek, M., Rudol, P., Heintz, F., Conte, G. (2015). HDRC3:A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems. Handbook of Unmanned Aerial Vehicles (Valavanis, K.P., Vachtsevanos, G.J.(eds.)Dordrecht: Springer Science+Business Media, pp. 849–952.

7. Yakovlev, K. S., Makarov, D. A.,Panov, A. I., Zubarev, D. V. (2013). Printsipy postroeniia mnogourovnevykh arkhitektur sistem upravleniia bespilotnymi letatelnymi apparatami [Principles of construction of multi-level governance systems architectures UAV]. Aviakosmicheskoe priborostroenie – Aerospace instrument, no. 4, pp. 10–28 (in Russian).

8. SpottsP. (2015,June 17). The ethics of killer robots.The Christian Science Monitor,Retrievedfrom : http://www.csmonitor.com/layout/set/print/USA/Military/2015/0617/The-ethics-of-killer-robots.

Download