SIMULATION OF THE SPACES OF PHASE COEXISTENCE IN SOLID SOLUTIONS WITH USING OF DIFFERENT THERMODYNAMIC MODELS

Author:

Kazakov Anatolii, Odessa National Polytechnic University, Odessa, Ukraine

Shapovalov Hennadii, Odessa National Polytechnic University, Odessa, Ukraine

Language: russian

Annotation:

Urgency of the research. The formation of the modulated periodic spatial structures in multicomponent solid solutions of semiconductors, under certain temperature and composition is possible. This leads to a degradation of properties of materials and devices created on their basis.

The research objective. Problems of forecasting of properties of structured functional materials in nanoelectronics and microelectronics with optimal properties for practical tasks are relevant today.

The statement of basic materials. The areas fulfillment of the conditions of formation of the spaces of phase coexistence of the second order for solid solutions  were calculated. The calculations in the framework of the regular solution model is strictly within the parameters of interaction of the first two coordination spheres, the model of postregulyar solution and the regular solution the model, taking into account the interactions of atoms in the first three coordination areas have been executed. The comparative analysis of the simulation results was obtained.

Key words:

computer simulation, thermodynamic models, of phase coexistence spaces, modulated structures, free energy, the differentiability

References:

1. Henoc, P., Izrael, A., Quillec, M., Launois, H. (1982). Composition modulation in liquid phase epitaxial InxGa1-xAsyP1-y layers lattice matched to InP substrates. Appl. Phys. Let, vol. 40, pp. 951–963.

2. Mahajan, S., Dutt, B.V., Temkin, H. et al. (1984). Spinodal decomposition in InGaAsP epitaxial layers. J. Crystal Growth, vol. 68, no. 2, pp. 589–595.

3. Kuwano, N., Funuka, K., Oki, K. et al. (1989). Electron microscope study of modulated structures and heterointerfaces in LPE-grown GaInAsP layers lattice matched on GaAs. J. Crystal Growth, vol. 98, pp. 82–89.

4. Vavilova, L.S. Kapitonov, V.A., Murasheva, A.V. et al. (1999). Spontanno formiruiushchiesia periodicheskie InGaAsP struktury s modulirovannym sostavom [Spontaneously formed periodic InGaAsP – structure with modulated structure]. Fizika i tekhnika poluprovodnikov – Physics and Technology of Semiconductor, vol. 33, no. 9, pp. 1108–1110 (in Russian).

5. Chu, S., Nakahara, S., Strege, K., Johnston, W. (1985). Surface layer spinodal decomposition in In1-xGaxAs1-yPy and In1-xGaxAs grown by hybrid transport vapor phase epitaxy. J. Appl. Phys, vol. 57, pp. 4610–4616.

6. Kazakov, A.I., Kvatashidze, L.T., Shapovalov, G.V. (2014). Kompiuternoe modelirovanie kriticheskikh prostranstv sosushchestvovaniia na fazovykh diagrammakh mnogokomponentnykh tverdykh rastvorov [Computer simulation for the phase coexistence spaces formation in quaternary semiconductor alloys]. Informatika i matematicheskie metody v modelirovanii – Computer and mathematical methods for modeling, vol. 4, no. 4, pp. 349–356(in Russian).

7. Onabe K. (1982). Thermodynamics of the type A1-xBxC1-yDy, III-V quaternary solid solutions. J.  Phys. Chem. Solids, vol. 43, no. 11, pp. 1071–1086.

8. Podolskaia, N.I., Karpov, S.Yu., Zhmakin, A.I. (2008). Energiia smesheniia soedinenii AlxInyGa1−x−yN [The energy of mixing compounds AlxInyGa1−x−yN]. Pisma v zhurnal tekhnicheskoi fiziki – Technical Physics Letters journal, no. 34 (9), pp. 17–23 (in Russian).

9. Notzel, R., Ledentsov, N.N., Daweritz, L. et al. (1992). Semiconductor quantum-wire structuresjflirectly grown on high-index surfaces. Phys. Rev., B, 45, pp. 3507–3513.

10. Alferov, Zh.I., Egorov, A.Yu., Zhukov, A.E., Ivanov, S.V. et al. (1992). Vyrashchivanie kvantovykh klasterov GaAs-AlAs na orientirovannykh ne po (100) fasetirovannykh poverkhnostiakh GaAs metodom molekuliarno-puchkovoi epitaksii [Growing GaAs quantum clusters on the AlAs-oriented not on the (100) surfaces of faceted GaAs by molecular beam epitaxy]. FTP – SSP, no. 26, pp. 1715–1719 (in Russian).

11. Gagis G.S., Vasilev V.I., Deryagin A.G., Dudelev V.V., Maslov A.S., Levin R.V., Pushnyi B.V. et al. (2008). Novel materials GalnAsPSb/GaSb and GalnAsPSb/InAs for room-temperature optoelectronic devices for a 3–5 mt wavelength range (GalnAsPSb/GaSb and GalnAsPSb/InAs for 3–5 mt). Semicond. Sci. Technol., 23, pp. 125026–125031.

12. Vasilev, V.I., Gagis, G.S., Kuchinskii, V.I., Danilchenko, V.G. (2015). Formirovanie troinykh tverdykh rastvorov AIIIBV na plastinakh GaAs i GaSb za schet tverdofaznykh reaktcii zameshcheniia [Formation of binary solid solutions AIIIBV on GaAs and GaSb wafers by solid-phase substitution reactions]. Fizika i tekhnika poluprovodnikov – Physics and Technology of Semiconductor, vol. 49, no. 7, pp. 984–988 (in Russian).

13. Sysoev, I.A., Lunina, M.L., Alfimova, D.L., Blagin, A.V., Gusev,D.A., Seredin, B.M. (2013). Formirovanie massivov kvantovykh tochek GaxIn1-xAsyP1-y v protcesse ionno-luchevogo osazhdeniia [Formation of arrays of quantum dots GaxIn1-xAsyP1-y in the ion-beam deposition]. Neorganicheskie materialy – Inorganic Materials, vol. 50, no. 2, pp. 1–7 (in Russian).

14. Okada, K., Suzuki, I. (1982). Classical calculations on the phase transition I. Phase diagram in four-dimensional space for the system with one order parameter. J. Phys. Soc. Jap., vol. 51, no. 10, pp. 3250–3257.

15. Kazakov, A.I., Mokritckii, V.A., Romanenko, V.N. et al. (1987). Raschet fazovykh ravnovesii v mnogokomponentnykh sistemakh [Calculation of phase equilibria in multicomponent systems]. Moscow: Metallurgiia (in Russian).

Download