DYNAMIC RISK ASSESSMENT OF THE WORK PLAN IMPLEMENTATION BY SIMULATION MODELING

Author:

Kazymyr Volodymyr, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Posadska Alina, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Language: ukrainian

Annotation:

Urgency of the research. In current conditions in network planning risk of the plan is assessed to improve the reliability of planning, since the implementation of any plan largely depends on its reliability.

Target setting. In network planning risk is the result of unforeseen events. As a result, work is performed not on time that leads to delay of the project, as well as the loss of financial, time and human resources. That is why it is necessary to assess the risk in the network model.

Actual scientific researches and issues analysis. In recent studies of risk assessment methods usage of network planning methods, logical and probabilistic methods with using game theory, markov processes, genetic algorithms and their modifications are proposed.

Uninvestigated parts of general matters defining. Despite of the fact that a lot of research has been done on this topic, they do not completely solve the problem of risk assessment in network planning in real time.

The research objective. Aim of the paper is the substantiation and description of a new approach for risk assessment in the network planning in real time mode.

The statement of basic materials. Risk is the degree of uncertainty of possible results in planning in future. It is assessed as the probability of plan implementation under the current circumstances. The proposed method of risk assessment combines game theory with extended time characteristics, using mathematical apparatus of temporal logics. A number of experiments are conducted. As a result of experiments the optimal strategy of plan implementation with maximum probability of performance (minimal risk) is obtained.

Conclusions. A new approach for risk assessment of work plan implementation in network planning in real time mode by method of simulation modeling is considered. It is implemented with plugin for risk assessment for network planning system in real-time mode EMS.

Key words:

network planning, network planning system in real time mode, methods of risk assessment, E-nets

References:

1. Averbah, L.I., Voropaev, V.I., Gelrud, Ya.D. (2010). Modelirovanie zadach planirovaniia i upravleniia proektami v usloviiakh riska i neopredelennosti s ispolzovaniem tsiklicheskoi setevoi modeli [Simulation of tasks of planning and management of the project in the conditions of risk and uncertainty using a cyclic network model]. Retrieved from http://www.sovnet.ru/pages/casm2.doc.3-4.

2. Printsipy planirovaniia i obespechenie nadezhnosti plana. Klassifikatsiia planov na predpriiatii [Principles of planning and ensuring the reliability of the plan. The classification of plan for the enterprise] (2016). Retrieved from http://studme.org/49340/ekonomika/printsipy_planirovaniya_-obespechenie_nadezhnosti_plana_klassifikatsiya_planov_predpriyatii.

3. Eremeev, A.P., Kurilenko, I.E. (2009). Komponenta vremennykh rassuzhdenii dlia intellektualnykh sistem podderzhki priniatiia reshenii realnogo vremeni [Component of temporal reasoning for intelligent systems of decision support in real-time]. Iskusstvennyi intellekt i priniatie reshenii – Artificial intelligence and decision-making, no. 1, pp. 31–45 (in Russian).

4. Litvinov, V.V., Kazimir, V.V., Liahov, A.L., Putienko, I.V., Bogdan, I.V. (2013). Metody testirovaniia i verifikatsii programmnogo obespecheniia [Methods of testing and verification of the software]. Nizhyn: FOP V. Lukyanenko TPK «Orchid» (in Russian).

5. Kazymyr, V.V., Posadska, A.S. (2015). Merezheve planuvannia v rezhymi realnoho chasu z vykorystanniam aparatu temporalnykh lohik [Network planning in real time mode using the temporal logic]. Tekhnichni nauky i tekhnolohii – Technical sciences and Technology, no. 1 (1), pp. 61–67 (in Ukrainian).

6. Gelrud, Ya.D. (2010). Obobshhennye stohasticheskie setevye modeli dlia upravleniia kompleksnymi proektami [Generalized stochastic network models for the management of complex projects]. Vestnik NGU. Seriia: Matematika, mehanika, informatika - Vestnik NGU. Series: Mathematics, Mechanics and Computer Science, vol. 10, no. 4, pp. 36–51 (in Russian).

7. Astanina, L.A., Kirina, L.V. (2012). Alternativnye stohasticheskie grafy v proektnom menedzhmente [Alternative stochastic graphs in project management]. Sbornik nauchnyh trudov Sworld - Collection of scientific papers Sworld, vol. 24 Economics, pp. 71–78 (in Russian).

8. Demkin, I.V. (2005). Upravlenie innovacionnym riskom na osnove imitacionnogo modelirovaniia. Osnovnye podkhody k otsenke innovatsionnogo riska. Chast 1. Otsenka riska [Innovative Risk Management, based on simulation modeling. Basic approaches to innovative risk assessment. Part 1: Risk assessment]. Problemy analiza riska – Problems of risk analysis, vol. 2, no. 3, pp. 249–273 (in Russian).

9. Littman, Michael L. (1994). Markov games as a framework for multi-agent reinforcement learning, in Proceedings of the Eleventh International Conference on Machine Learning (ICML). New Brunswick, NJ, pp. 157–163.

10. Nazimko, V.V., Nazimko. I.V., Yaitsov, A.A. (2010). Uchet riskov v setevom planirovanii razvitiia gornykh rabot pri otrabotke vyemochnogo uchastka ugolnoi shahty [Consideration of risks in network planning of development of mining operations in mining production areas of a coal mine]. Naukovі pratsі DonNTU. Serіia: ekonomіchna – Scientific papers of DonNTU. Series: economic, issue 38-3, pp. 94–103 (in Russian).

11. Metody kolichestvennoj ocenki riskov (2016). [Methods of quantitative risk assessment]. Retrieved from http://studme.org/45514/ekonomika/metody_kolichestvennoy_otsenki_riskov.

12. Kazimir, V.V. (2005). Modelno-orientirovannoe upravlenie intellektualnymi proizvodstvennymi sistemami [Model-Based Management of intellectual manufacturing systems]. Doctor’s thesis.Kyiv (in Russian).

13. Nutt, G. (1972). Evaluation Nets for Computer Systems Performance Analysis. FJCC, AFIPS PRESS, рр. 279–286.

14. Kazymyr, V.V., Sira, H.A., Mushketyk, I.I. (2011). Rozpodilena systema imitatsiinoho modeliuvannia EMS [Distributed simulation system EMS]. Visnyk Chernihivskoho derzhavnoho tekhnolohichnoho universytetu – Visnyk of Chernihiv State Technological University, no. 3, pp. 144–153 (in Ukrainian).

15. Parametric Computation Tree Logic with Knowledge (2016). Retrieved from http://csp2011.mimuw.edu.pl/proceedings/PDF/CSP2011286.pdf.

16. Kazimir, V.V. (2002). Verifikatsiia reaktivnykh sistem s pomoshchiu formul temporalnoi logiki na E-setevyh modeliakh [Verification of reactive systems using temporal logic formulas on E-network models].Matematichnі mashini і sistemi – Mathematical Machines and Systems, no. 1, рp. 29–40 (in Russian).

17. Dynamichne prohramuvannia [Dynamic programming] (2016). Retrieved from http://pidruchniki.com/14250725/menedzhment/dinamichne_programuvannya.

Download