Ckiba Margarita, Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine

Pivovarov Alexander, SHED “Ukrainian State University of Chemical Technology” (8 Gagarina Av., 49005 Dnepropetrovsk, Ukrainе)

Makarova Anna, SHED “Ukrainian State University of Chemical Technology” (8 Gagarina Av., 49005 Dnepropetrovsk, Ukrainе)

Vorobiova Viktoriia, National Technical University of Ukraine “Kiev Polytechnical Institute”, Kiev, Ukraine

Gnatko Elena, SHED “Ukrainian State University of Chemical Technology” (8 Gagarina Av., 49005 Dnepropetrovsk, Ukrainе)

Language: ukrainian


Relevance of the research topic. The main problem in our region and other countries is the problem of safe drinking water.

Target setting. The current environmental condition and insufficient quality of drinking water causes the need to develop a new effective comprehensive method for water disinfection.

Actual scientific researches and publications analysis. Recently, the most energy effective and environmentally friendly processes are based on the use of plasma discharges of different configurations gas phase as a tool for water treatment and a method to obtain solutions which are characterized by disinfectant properties.

Selection the unexplored part of the general problem. Existing configurations of plasma discharges are not well understood and do not always provide the preparation of compounds with predicted properties.

Set of tasks. Purpose of the article is the study of chemical processes in water and aqueous solutions under contact nonequilibrium plasma with subsequent analysis of antibacterial properties of the resulting products of reactions.

Presentation of basic material. The paper is shown the efficiency of the contact nonequilibrium low-temperature plasma for the treatment of water and aqueous solutions NaCl, AgNO3, AgCl in order to obtain products characterized by disinfectant properties. Technologically suitable conditions for the plasma chemical method to obtain of disinfection compounds in water and aqueous media are determined. Chemical processes in water and aqueous solutions of NaCl, AgNO3, AgCl under the plasma discharge action have been analyzed. Author have studied an antagonistic action of plasma chemical obtained compounds at a series of micro-organisms (Staphylococcus aureus, Staphylococcus saprophibicus, Staphylococcus epidermidis, E.coli, Pseudomonas aeruginosa, Candida albicans and others.) in comparison with existing disinfectants.

Conclusion. A new method to obtain of solutions that are characterized by antimicrobial properties using the contact nonequilibrium low-temperature plasma is considered.

Key words:

preparation, plasma discharge, oxidizing compounds, silver nanoparticles, disinfection, drinking water


1. Matsenko, O.M., Chyhryn, O.Yu., Taranovskyi, V.I., Dolhodush, A.I. (2011). Sotsio-ekoloho-ekonomichni problemy vodopostachannia v Ukraini [Socio-ecological-economic challenges of water supply in Ukraine].Mekhanizm rehuliuvannia ekonomiky – Mechanism of Economic Regulation, no. 4, pp. 264–271 (in Ukrainian).

2. Tendero, C., Tixier, C., Tristant, P., Desmaison, J. (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta. Part B: Atomic Spectroscopy, vol. 61 (1), pp. 2–30.

3.. Kaneko, T., Baba, K., Hatakeyama R. (2009). Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode. Journal of Applied Physics, vol. 105 (10), pp. 103–306.

4. Ostrikov, K., Cvelbar, U., Murphy A. B. (2011). Plasma nanoscience: setting directions, tackling grand challenges. J. Phys. D: Appl. Phys., no. 44 (17), pp. 1–60.

5. Pivovarov, А.A., Kravchenko, A.V., Tishchenko, А.P., Nikolenko, N.V., Sergeeva, O.V., Vorobeva, M.I., Treshchuk, S.V. (2015). Contact nonequilibrium plasma as a tool for treatment of water and aqueous solutions: Theory and practice. Russian Journal of General Chemistry, vol. 85, no. 5, pp. 1339–1350.

6. Pivovarov, O.A., Skyba, M.I. (2015). Vykorystannia kontaktnoi nerivnovazhnoi nyzkotemperaturnoi plazmy v hidrometalurhiinii promyslovosti [Application the contact nonequilibrium low-temperature plasma in hydrometallurgical industry]. Dnipropetrovsk: Aktsent PP (in Ukrainian).

7. Pivovarov, A.A., Tishchenko, A.P. (2006). Neravnovesnaia plazma protcessy aktivatcii vody i vodnykh rastvorov [The nonthermal plasma: the activation of the processes of water and aqueous solutions]. Dnepropetrovsk: Grek (in Russian).

8. Pivovarov, O., Zakharov, R., Nikolenko, M. (2015). Treating aqueous solutions of sodium chloride by nonequilibrium low temperature plasma. Chemistry & Chemical Technology, vol. 9, no. 1, pp. 95–99.

9. Vorobiova, M.I., Pivovarov, O.A. (2014). Formuvannia koloidnykh nanochastok sribla z vodnykh rozchyniv AgNO3 pid diieiu kontaktnoi nerivnovazhnoi plazmy [Formation of the colloid silver nanoparticles from aqueous solutions AgNO3 under the influence of the contact nonequilibrium plasma]. Visnyk ChDTU – Visnyk of Chernihiv State Technological University, no. 4, pp. 39–44 (in Ukrainian).