Lytvyn Olexandr, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Language: ukrainian


Urgency of the research. The appointment of the gas transportation system (GTS) of Ukraine is to ensure reliable and uninterrupted transit of natural gas from suppliers to importers and the supply of gas to domestic consumers. Modern development of submission technology and information processing advance to existing control diagnosing systems new requirements.

Target setting. The amount of information technologies on the development of GPU diagnostic and control systems do not allow to diagnose quickly and conduct the work related to the elimination of non-reliability of measuring channels and analysers in the process of GPU working without stopping it.

Actual scientific researches and issues analysis. GPU reliability affects the operation of the pipeline from which depends the uninterrupted supply of gas to consumers, as well as transportation through the territory of Ukraine. However, the analysis of publications in this area indicates insufficient research in the area of reliability of automatic diagnosis in terms of failure or uncertainty in the analyzers work,connection channels.

Uninvestigated parts of general matters defining. Particular attention in the context of fault tolerance should be given to the equipment instrumentation and automation. To solve the issues related to control, analysers and reliability of connection channels in terms of continuous operation.

The research objective. The main ojective of this work is to analize the methodologies of diagnostics designed to prevent the forced change of GPU regime, including stops because of measurement channels and detectors failure.

The statement of basic materials.  If it is not possible to measure directly some important diagnostic parameters their values are ​​determined by mathematical calculation of others. Real values may vary by related physical and mathematical relationships taking into account possible errors and methods of measurement (indirect analysis method). This method will allow to detect only those faults that cause deviations, change of thermogasdynamic parameters (pressure, temperature, gas flow) from the average, specified by technical documentation values. The main difficulty of technical state flow of a centrifugal supercharger is in the difficulty of mathematical modelling or quantity assessment of the processes occurring in the supercharger, which leads to complex problems of defining a reliable diagnosis in a definite period of time as well as the reliability of analysers and connections, which is a the cause of the GPU emergency stop.

Conclusions. A large number of measured GPU parameters is in physical dependence from one another. Using these dependencies the algorithms calculate estimated (analytical) values of some parameters via measured values of others (parameters - arguments). This allows to maintain the control and regulation of parameters under the conditions of failure of some measuring channels and continue GPU work with a given mode.

Key words:

gas pumping units, automatic diagnostics system, fault tolerance, refusal of measuring channels, sensors, mode of GPU


1. Baikov, I.R., Zhdanova, T.G., Gareev, E.A. (1994). Modelirovanie tekhnologicheskikh protcessov truboprovodnogo transporta nefti i gaza [Modelling of technologigal processes of pipeline oil and gas transport]. Ufa (in Russian).

2. Belokon, N.I., Porshakov, B.P. (1969). Gazoturbinnye ustanovki na kompressornykh stantciiakh magistralnykh gazoprovodov [Gas turbines at compressor stations of the main gas pipelines]. Moscow: Nedra (in Russian).

3. Blekhman, I.I. (1994). Vibratcionnaia mekhanika.[Vibrational Mechanics]. Moscow: Nauka (in Russian).

4. Dimentberg, M.F. (1980). Nelineinye stokhasticheskie zadachi mekhanicheskikh kolebanii [Nonlinear stochastic problems of mechanical vibrations]. Moscow: Nauka (in Russian).

5. Zaritckii, S.P. (1987). Diagnostika gazoperekachivaiushchikh agregatov s gazoturbinnymi privodami [Diagnostic of gastransmitted agrigates with gasturbine drive unit]. Moscow: Nedra (in Russian).

6. Keba, I.V. (1980). Diagnostika aviatcionnykh gazoturbinnykh dvigatelei [Diagnostic of aviational gasturbine engines]. Moscow: Transport (in Russian).

7. Kudashev, E.R., Ivanov, V.A., Semenov, A.S. (2005). Identifikatciia neispravnostei gazoperekachivaiushchego agregata metodom «slabykh rezonansov» [Fault identification of a pumping unit by “weak resonances” method]. Megapaskal. Tiumen: TiumGNGU, vol. 1, pp. 57–61 (in Russian).

8. Kunina, P.S., Pavlenko, P.P. (2001). Diagnostika gazoperekachivaiushchikh arpegatov s tcentrobezhnymi nagnetateliami [Diagnostic of gastransmitted agrigates with a centrifugal blower]. Rostov-na-Donu, Izd-vo RGU (in Russian).

9. Mikaelian, E.A. (1998). Tekhnicheskoe obsluzhivanie gazoturbinnykh gazoperekachivaiushchikh agregatov. Metodologiia, issledovaniia, analiz, praktika [Maintenance of gasturbine gaspumping units. Methodology, research, analysis, practice] Moscow: RGUnefti i gaza im. Gubkina I.N., р. 318 (in Russian).

10. Mikaelian, E.A. (1994). Ekspluatatciia gazoturbinnykh gazopererabatyvaiushchikh apparatov kompressornykh stantcii, gazoprovodov [Operation of gasturbine gasprocessing units of compressor stations, pipelines].Moscow: Nedra (in Russian).

11. Sirotin, H.H., Korovin, Iu.M. (1979). Tekhnicheskaia diagnostika aviatcionnykh gazoturbinnykh dvigatelei [Technical diagnostic of aviational gasturbine engines]. Moscow: Mashinostroenie (in Russian).

12. Smorodov, E.A., Kitaev, C.B. (2000). Primenenie metodov lineinogo programmirovaniia k raschetu koeffitcientov tekhnicheskogo sostoianiia gazoperekachivaiushchikh agregatov [Application of Linear Programming to the calculation of the coefficients of gas pumping units technical state]. Gazovaia promyshlennost – Gas Industry of Russia, no. 5, pp. 29–31(in Russian).

13. Kibarin, A.A., Khodanova, T.V., Kasimov, A.S., Martynov, I.V., Peregudov, Iu.M. (2010). Uchet tekhnicheskogo sostoianiia gazoturbinnoi ustanovki pri opredelenii ee rabochei moshchnosti [Accounting of the technical condition of the gas turbine unit while determining its operating capacity]. Vestnik Evraziiskogo innovatcionnogo universiteta – Journal of Innovative University of Eurasia, no. 4 (40), pp. 25–27 (in Russian).

14. Kharionovskii, V.V. (1997). Nadezhnost i diagnostika gazoprovodov [Reliability and diagnostics of gas pipelines]. Gazovaia promyshlennost – Gas Industry of Russia, no. 3, pp. 10–12 (in Russian).

15. Khenli, D., Kumamoto, X. (1987). Nadezhnost tekhnicheskikh sistem i otcenka riska [Realibility of technical system and risk assessment]. Moscow: Mir (in Russian).

16. Epifanov, S.V., Shevchenko, M.V. (2009). Opredelenie tiagi GTD s uchetom izmeneniia sostoianiia protochnoi chasti [Definition of gas turbine engine thrust, taking into account changes in the state of the running part].Aviatcionno-kosmicheskaia tekhnika i tekhnologiia – Aerospace technic and technology, no. 10, pp. 184–189 (in Russian).