SPACE FACTORS INFLUENCE ON SUPERLIGHT-WEIGHT THERMAL PROTECTION SYSTEM: CONCEPT, MODELING, AND RISK ANALYSIS

Author:

Yatsenko Vitaliy, Space Research Institute of National Academy of Sciences and State Space Agency of Ukraine (40 Akademika Glushkova Av., build. 4/1, 03187 Kyiv, Ukraine).

Falchenko Yurii, Paton Electric Welding Institute of NAS of Ukraine (11 Bozhenko Str., 03680 Kiev, Ukraine)

Petrushynets Lidiia, Paton Electric Welding Institute of NAS of Ukraine (11 Bozhenko Str., 03680 Kiev, Ukraine)

Klymenko Yuriy, Space Research Institute of National Academy of Sciences and State Space Agency of Ukraine (40 Akademika Glushkova Av., build. 4/1, 03187 Kyiv, Ukraine).

Novomlinets Oleg, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Language: ukrainian

Annotation:

Urgency of the research. Application of reusable guiding space vehicles depends on reliability of thermal protection system (TPS).

Target setting. During flight a space vehicle is exposed to many negative factors which may violate its thermal protection. The paper deals with the problem of risk assessment under the impact of space factors on TPS.

Actual scientific researches and issues analysis. The problem of thermal protection has a prominent role in development of reusable space vehicles.

Uninvestigated parts of general matters defining. Risk assessmentmodeling of temperature distribution in Ni sample depending on its porosity, and experimental studies on heating of a mock-up ofthree-layer honeycomb panel were performed.

The research objective. Assessment of the risk at the impact of space factors on TPS of space vehicles and comparative analysis of the results of numerical modeling and experimental studies at diffusion welding of thermal protection panel (TPP).

The statement of basic materials. Analysis of the impact of space factors on TPS was performed. Proceeding from analysis of temperature fields, technological fixtures were developed to ensure uniform heating of TPP.

Conclusions. Analysis of the impact of space environment factors on thermal protection system of space vehicles was performed. A new concept of TPS modeling was proposed which is based on the following principles: synergic, physical and computational.

Algorithms and software were developed for modeling thermal protection systems of space vehicles and calculation of the amount of risk. Dependence of the amount of risk on space factors was derived.

Analysis of the conditions of TPP heating at vacuum diffusion welding was performed. It was established that the nature of heating depends on a number of factors.

At TPP heating without fixture application, prevailing heating of honeycomb core and cover corners to 900 C and 800 C, respectively, is observed in it, at slower heating of the cover central part. Application of technological fixture ensures a more uniform heating of the entire panel.

Key words:

heat-protection system, space factors, risk analysis,reusable space vehicles, modeling, diffusion welding

References:

1. Johnson, S.M. (2016). Thermal Protection Materials and Systems: An Overview. Engineered Ceramics: Current Status and Future Prospects. Hoboken, New Jersey: John Wiley & Sons, Inc., pр. 224–243.

2. Parul Agrawal, Dinesh Prabhu (2016). Investigation of Performance Envelope for Phenolic Impregnated Carbon Ablator(PICA). 54th AIAA Aerospace Sciences Meeting (4-8 January 2016). San Diego, California, USA, pр. 1–16.

3. Hsi-Wu Wong, Jay Peck, James Assif et al. (2016). Detailed analysis of species production from the pyrolysis of the Phenolic Impregnated Carbon Ablator. Journal of Analytical and Applied Pyrolysis, vol. 122, issue 11, pр. 258–267.

4. Demonis, I.M., Petrova, A.P. (2011). Materialy VIAM v kosmicheskoi tekhnike [VIAM Materials in Space Technology]. Vse materialy. Entsiklopedicheskii spravochnik – All materials. Encyclopedic Guide, № 6, pp. 2–9 (in Russian).

5. Lozino-Lozinskii, G.N., Bratukhin, A.G. (1997). Aviatsionno-kosmicheskie sistemy [Aerospace Systems]. Moscow: MAI (in Russian).

6. Elementy (tipy) teplozashchity Burana [Elements (types) of thermal protection “Buran”]. Retrieved from http://www.buran.ru/htm/tersaf4.htm.

7. Donald, M. Curry (1993). Curry. Space Shuttle Orbiter thermal protection system design and flight experience. First ESA/ESTEC Workshop on Thermal Protection Systems (5-7 May, 1993). Noordwijk, Netherlands.

8. Pate-Cornell, M.E., Fischbeck, P.S. (1990). Safety of the thermal protection systeothe spacshuttlorbiter: Quantitative analysiand organizational factors. Phase 1: Risk-basepriority scaland preliminary observationsLangle: National Aeronautics and Space Administration Scientific and Technical.

9. Yatsenko, V. (2015). Optimization methods in material science: synergetics, dynamical models, and optimization problems. 3rd International Scientific conference «Nonlinear analysis and applications», 15 May 2015.Kiev, p. 79.

10. Yatsenko, V., Girenko, A., Husarova, I. et al. (2015). Superlight-weight thermal protection systems for space applications: conception, methods, and applications. 6th European Conference for Aeronautic and Space Sciences (EUCAS 2015), 29 June – 3 July 2015. Krakow, Poland, p. 169.

11. Yatsenko, V., Pardalos, M., Boyko, N., Rebennack, S. (2010).Space weather influence on power systems: prediction, risk analysis, and modeling. EnergySystems, vol. 1, № 2, pp. 197207.

12. Musin, R.A., Koniushkov, G.V. (1991). Soedinenie metallov s keramicheskimi materialami [Connection of metals with ceramic materials]. Moscow: Mashinostroenie (in Russian).

Download