Fesenko Artem, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Yershov Roman, Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Stepenko Serhii , Chernihiv National University of Technology (95 Shevchenka Str., 14027 Chernihiv, Ukraine)

Language: ukrainian


Importance of the research. Specific part of the power supply systems based on photovoltaic cells has increased recently. One of those types is the autonomous power supply system.

Formulation of the problem. Autonomous power systems based on the photovoltaic cells generally also contain the storage batteries. Due to a variety of types and a wide range of existing models the problem of choosing the optimal model of storage battery is an issue.

Actual scientific researches and issues analysis. The most of existing or similar solutions contain the lead-acid batteries. The other perspective solutions by using the nickel or lithium batteries are also exist.

Uninvestigated parts from general problem definition. In the discussed sources was not proposed a single and universal method of selection the storage batteries for similar types of systems.

The research objective. The group of criteria for comparison of existing types of storage batteries should be proposed. An informed choice of the specific type of battery for power supply system based on photovoltaic cell array based on those criteria should be performed.

The statement of basic materials. As a comparison parameters the specific capacitive cost, cell voltage, volume capacity, safety, environmental friendliness and the average lifetime were proposed. The numerical comparison was made for the lead-acid, nickel-cadmium, nickel-metal hydride, lithium ion and lithium-iron-phosphate types of batteries.

Conclusions. According to calculated parameters the most acceptable type of storage battery for reviewed types of power supply systems is still the lead-acid battery. The perspective application is issued for lithium batteries, but their high specific capacitive cost restrict its.

Key words:

storage battery, lead-acid batteries, nickel-cadmium batteries, lithium-ion batteries, specific capacitive cost, volume capacity


1. Akkumuliatornaia batareia Challenger A12-200 [Storage battery Challenger A12-200]. Retrieved from http://220volt.com.ua/akkumulyatornaya-batareya-challenger-a12-200.

2. Akkumuliatornaia batareia Challenger OPzV2- 500 [Storage battery Challenger OPzV2- 500]. Retrieved from http://avante.com.ua/catalog/akkumuljatornaja_batareja_challenger_opzv2-_500_2v_500_a_ch-05679.

3. Akkumuliatornaia batareia Leoch DJM 12120 [Storage battery Leoch DJM 12120]. Retrieved from http://www.leoton.ua/leoch-battery-djm12120.php.

4. Akkumuliatornaia batareia SIAP PzS 4 APH 420 2V-420A [Storage battery SIAP PzS 4 APH 420 2V-420A]. Retrieved from http://alteco.in.ua/products/akkumulyatory/akkumulyatory-tyagovyye/siap-pzs-4-aph-420-detail.

5. Akkumuliatornaia batareia VENTURA GPL 12-200 12V 200Ah [Storage battery VENTURA GPL 12-200 12V 200Ah]. Retrieved from http://ipt-ups.com.ua/ventura-gpl-200-12-12v-200ah.

6. Akkumuliatornaia batareia Ventura VG12-200 [Storage battery Ventura VG12-200]. Retrieved from http://avtonom.com.ua/batarei-akkumulyatornye/akkumulyatory-dlya-ibp/akkumulyator-dlya-ibp-ventura-vg-12-200-vrla-gel-.

7. Khrustalev, D.A. (2003). Akkumuliatory [Storage batteries]. Moscow: Izumrud (in Russia).

8. Alami, M.E., Habibi, M. and Bri, S. (2015). The modeling of maximum power point tracking controller for increasing efficiency of solar power system. Proceedings from 3rd International Renewable and Sustainable Energy Conference (IRSEC) (Marrakech, December 10-13, 2015). Marrakech: pp. 1–6 (in Morocco).

9. Changhong Nickel Cadmium Battery for Rolling Stock (Ni-CD Battery). Retrieved from http://changhong-battery.en.made-in-china.com/product/aSrJYkIGgsWN/China-Changhong-Nickel-Cadmium-Battery-for-Rolling-Stock-Ni-CD-Battery-.html.

10. Everexceed Maintenance Free NiCd Battery. Retrieved from http://ru.made-in-china.com/co_hhyzhyan1314/product_Everexceed-Maintenance-Free-NiCd-Battery-Ebh-Series-1-2V-100ah_ereeooreg.html.

11. Guan-Chyun Hsieh, Liang-Rui Chen and Kuo-Shun Huang (2001). Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller. IEEE Transactions on Industrial Electronicsvol. 48, pp. 585–593.

12. Ionescu, P.D., Moscalu, M. and Moscalu, A. (2003). Intelligent charger with fuzzy logic. Signals, Circuits and Systems, 2003. SCS 2003. International Symposium, vol. 1, pp. 101–104.

13. Melvix, J.S.M.L., Sundararamabalasubramanian, K. and Madhan, M.G. (2014). Development of intelligent battery monitoring system for solar powered lighting applications. Proceedings from IEEE International Conference on Computational Intelligence and Computing Research (Coimbatore, December 18-20, 2014). Coimbatore: pp. 1–5 (in India).

14. Pocket Plate Range EBL Series long life EBL 100 Nickel cadmium rechargeable 1.2V nicd battery. Retrieved from http://everexceedcorp.en.alibaba.com/product/60204037944-801256541/EverExceed_Pocket_Plate_Range_EBL_Series_long_life_Nicd_100AH_battery.html.

15. Subashini, M. and Ramaswamy, M. (2016). A novel design of charge controller for a standalone solar photovoltaic system. Proceedings from 3rd International Conference on Electrical Energy Systems (ICEES).(Chennai, March 17-19, 2016). Chennai: pp. 237–243 (in India).

16. Sugimoto, Y. (2015). The Solar Cells and the Battery Charger System Using the Fast and Precise Analog Maximum Power Point Tracking Circuits. Proceedings from IEEE Computer Society Annual Symposium on VLSI(Montpellier, July 08-10, 2015) Montpellier: pp. 597–602 (in France).

17. Tesla Powerwall: The Complete ReviewNews energys age. http://news.energysage.com Retrieved from http://news.energysage.com/tesla-powerwall-complete-review.