Компаративний аналіз технологій адитивного виробництва в галузі машинобудування

Автор(и)

DOI:

https://doi.org/10.25140/2411-5363-2023-2(32)-117-140

Ключові слова:

3D-друк; адитивне виробництво; галузеве машинобудування; Binder Jetting; Directed Energy Deposition; Material Extrusion; Material Jetting; Powder Bed Fusion; Sheet Lamination; Vat Photopolymerization

Анотація

Технологій адитивного виробництва існує понад 30 різновидів і кожного року їх стає дедалі більше, які також патентуються, стають новими, по-різному називаються, але всі вони так чи інакше мають відношення до якогось конкретного типу технологій адитивного виробництва або комбінації типів. Ця стаття містить компаративний аналіз основних технологій адитивного виробництва, опис унікальності використання кожного типу технологій, застосування технологій, їх переваги недоліки та можливість реалізації у машинобудуванні. У роботі наведено систематизацію даних, приведення вищеперерахованих показників у табличний вигляд, стан технологій адитивного виробництва та перспективи розвитку в галузі машинобудування.

Біографії авторів

Ігор Петренко, Національний університет «Чернігівська політехніка»

аспірант

Максим Болотов, Національний університет «Чернігівська політехніка»

кандидат технічних наук, доцент кафедри технологій зварювання та будівництва

Тімур Ганєєв, Національний університет «Чернігівська політехніка»

кандидат технічних наук, доцент кафедри технологій зварювання та будівництва

Посилання

Diegel, O., Nordin, A., & Motte, D. (2019). A Practical Guide to Design for Additive Manufacturing. Additive Manufacturing Technologies, 19-39. doi:10.1007/978-981-13-8281-9_2.

Dilberoglu, U.M., Gharehpapagh, B., Yaman, U., & Dolen, M. (2017). The role of additive manufacturing in the era of Industry 4.0. Procedia Manufacturing, 11, 545-554. https://doi.org/10.1016/j.promfg.2017.07.148.

Shrestha, S., & Manogharan, G.P. (2017). Optimization of Binder Jetting Using Taguchi Method. Article JOM: the journal of the Minerals, Metals & Materials Society, 69(3). doi:10.1007/s11837-016-2231-4.

Carroll, B.E., Palmer, T.A., & Beese, A.M. (1 April, 2015). Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 87, 309-320. https://doi.org/10.1016/j.actamat.2014.12.054.

Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A.L., Bose, S., Bandyopadhyay, A., Schoenung, J. M., Lavernia, E. J., & Noam, E. (2021). Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, 271-295. https://doi.org/10.1016/j.mattod.2021.03.020.

Perez, M., Carou, D., Rubio, E. M., & Teti, R. (17-19 July 2019). Current advances in additive manufacturing. 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

Colosimo, B.M., Huang, Q., Dasgupta, T., Tsung, F. (2018). Opportunities and challenges of quality engineering for additive manufacturing. Quality Engineering for Advanced Manufacturing, 50(3). https://doi.org/10.1080/00224065.2018.1487726.

Singh, S., Ramakrishna, S., & Berto, F. (2020). 3D Printing of polymer composites: A short review. MDPS, 2(2). https://doi.org/10.1002/mdp2.97.

Rafiquzzaman, Md., Islam, Md.M., Rahman, Md.H., Talukdar, Md.S., & Hasan, Md.N. (2016). Mechanical property evaluation of glass–jute fiber reinforced polymer composites. Polymers for advanced technologies, 27(10), 1308-1316. https://doi.org/10.1002/pat.3798.

Bhatt, P.M., Kabir, A.M., Peralta, M., Bruck, H.A., & Gupta, S.K. (2019). A robotic cell for performing sheet lamination-based additive manufacturing. Additive Manufacturing, 27, 278-289. https://doi.org/10.1016/j.addma.2019.02.002.

Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., Basit, A.W. (2021). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 329, 743-757. https://doi.org/10.1016/j.jconrel.2020.10.008.

Calvert, P. (2001). Inkjet printing for materials and devices. Chem Mater, (13(10)), 3299‐3305.

Calvert, P., & Crockett, R. (1997). Chemical solid free‐form fabrication: making shapes without molds. Chem Mater, (9 (3)), 650‐663.

Medellin, A., Du, W., Miao, G., Zou, J., Pei, Z., & Ma, C. (2019). Vat Photopolymerization 3D Printing of Nanocomposites: A Literature Review. J. Micro Nano-Manuf., (7(3)), 031006. https://doi.org/10.1115/1.4044288.

Van, O.T.H., Perelaer, J., Laat, A.W., & Schubert, U.S. (2008). Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater., (20(2)), 343‐345.

Sirringhaus, H., Kawase, T., & Friend, R.H. (2000). High‐resolution inkjet printing of all‐polymer transistor circuits. Science, (290(5499)), 2123‐2126.

Shimoda, T., Morii, K., Seki, S., & Kiguchi, H. (2003). Inkjet printing of light‐emitting polymer displays. Mrs Bulletin, 28(11), 821‐827.

Bharathan, J., & Yang, Y. (1998). Polymer electroluminescent devices processed by inkjet printing: I. Polymer light‐emitting logo. Appl Phys Lett., (72(21)), 2660‐2662.

Kordás, K., Mustonen, T., & Tóth, G. (2006). Inkjet printing of electrically conductive patterns of carbon nanotubes. Small, (2(8–9)), 1021‐1025.

Perelaer, J., Hendriks, C. E., de Laat, A. W., & Schubert, U.S. (2009). One‐step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology, (20(16)), 165303.

Liu, Y., Cui, T., Varahramyan, K. (2003). All‐polymer capacitor fabricated with inkjet printing technique. Solid State Electron, (47(9)), 1543‐1548.

Ziaee, M., & Crane, N.B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031.

Liu, R., Wang, Z., Sparks, T., Liou, F., & Newkirk, J. (2017). Aerospace applications of laser additive manufacturing. Woodhead Publishing Series in Electronic and Optical Materials, 351-371. https://doi.org/10.1016/B978-0-08-100433-3.00013-0.

Najmon, J.C., Raeisi, S., & Tovar, A. (2019). Review of additive manufacturing technologies and applications in the aerospace industry. Additive Manufacturing for the Aerospace Industry, 7-31. https://doi.org/10.1016/B978-0-12-814062-8.00002-9.

Mori, D. (2014). Adytyvne vyrobnytstvo v yakosti frezeruvannіa [Additive production as milling].

Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of polymer-fiber composites. Composite Structures, (182), 36-53. https://doi.org/10.1016/j.compstruct.2017.08.088.

Okwuosa, T.C., Stefaniak, D., Arafat, B., Isreb, A., Wan, K.-W., & Alhnan, M. A. (2016). Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets A Lower. Pharmaceutical Research, 33, 2704-2712.

Melocchi, A., Parietti, F., Maroni, A., Foppoli, A., Gazzaniga, A., & Zema, L. (2016). Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. International Journal of Pharmaceutics, 509(1–2), 255-263. https://doi.org/10.1016/j.ijpharm.2016.05.036.

Ravi, A.K., Deshpande, A., & Hsu, K.H. (2016). An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. Journal of Manufacturing Processes, 24(1), 179-185. https://doi.org/10.1016/j.jmapro.2016.08.007.

Gong, H., Snelling, D., Kardel, K., & Carrano, A. (2019). Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes. JOM, 71, 880-885.

Jeffrey, Plott, Xiaoqing, Tian, & Albert, J. Shih. (August 2018). Voids and tensile properties in extrusion-based additive manufacturing of moisture-cured silicone elastomer. Additive Manufacturing, 22, 606-617. https://doi.org/10.1016/j.addma.2018.06.010.

Turner, B.N., Strong, R., & Gold, S.A. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid prototyping journal, 20(3), 192-204. doi:10.1108/RPJ-01-2013-0012.

Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B. Engineering, 110, 442-458. https://doi.org/10.1016/j.compositesb.2016.11.034.

Kalsoom, U., Nesterenko, P.N., & Paull, B. (2016). Recent developments in 3D printable composite materials. RSC Adv., (6), 60355-60371. https://doi.org/10.1039/C6RA11334F.

Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of polymer-fiber composites. Composite Structures, 182, 36-53. https://doi.org/10.1016/j.compstruct.2017.08.088.

Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A.L., Bose, S., Bandyopadhyay, A., Schoenung, J.M., Lavernia, E.J., & Eliaz, N. (2021). Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, 271-295. https://doi.org/10.1016/j.mattod.2021.03.020.

Huang, J., Chen, Q., Jiang, H., Zou, B., & Li, L. (2020). A survey of design methods for material extrusion polymer 3D printing. Virtual and Physical Prototyping, 15(2). https://doi.org/10.1080/17452759.2019.1708027.

Goh, G.D., Yap, Y.L., Tan, H.K.J., Sing, S.L., Goh, G.L., & Yeong, W.Y. (2020). Process–Structure–Properties in Polymer Additive Manufacturing via Material Extrusion: A Review. Critical Reviews in Solid State and Materials Sciences, 45(2). https://doi.org/10.1080/10408436.2018.1549977.

Gülcan, O., Tamer, A., & Günaydın, K. (2021). The State of the Art of Material Jetting—A Critical Review. Additive Manufacturing II, Polymers. Special Issue: Process–Structure–Properties in Polymer 13(16). 2829. https://doi.org/10.3390/polym13162829.

Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2020). Material Jetting. Additive Manufacturing Technologies (рр. 203-235).

Kunchala, P., & Kappagantula, K. (2018). 3D printing high density ceramics using binder jetting with nanoparticle densifiers. Materials & Design, 155, 443-450. https://doi.org/10.1016/j.matdes.2018.06.009.

Dong, H., & Carr, W.W. (2006). An experimental study of drop-on-demand drop formation. Physics of Fluids, (18), 072102. https://doi.org/10.1063/1.2217929.

Sun, S., Brandt, M., & Easton, M. (2017). Powder bed fusion processes: An overview. Woodhead Publishing Series in Electronic and Optical Materials (рр. 55-77). https://doi.org/10.1016/B978-0-08-100433-3.00002-6.

Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2020). Powder Bed Fusion. Additive Manufacturing Technologies (рр. 125-170).

Awad, A., Fina, F., Goyanes, A., Gaisford, S., & Basit, A.W. (2020). 3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics, 586, 119594. https://doi.org/10.1016/j.ijpharm.2020.119594.

Cai, C., Tey, W.S., Chen, J., Zhu, W., Liu, X., Liu, T., Zhao, L., Zhou, K. (2021). Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. Journal of Materials Processing Technology, 288, 116882. https://doi.org/10.1016/j.jmatprotec.2020.116882.

Santos, L.M.S., Ferreira, J.A.M., Jesus, J.S., Costa, J.M., & Capela, C. (2016). Fatigue behaviour of selective laser melting steel components. Theoretical and Applied Fracture Mechanics, 85(Part A), 9-15. https://doi.org/10.1016/j.tafmec.2016.08.011.

Nandy, J.A., Sarangi, H., & Sahoo, S. (2019). Review on Direct Metal Laser Sintering: Process Features and Microstructure Modeling. Lasers in Manufacturing and Materials Processing, 6, 280-316.

Körner, C. (2016). Additive manufacturing of metallic components by selective electron beam melting – a review. International Materials Reviews, 61(5). https://doi.org/10.1080/09506608.2016.1176289.

Mekonnen, B.G., Bright, G., Walker, A. (2016). A Study on State of the Art Technology of Laminated Object Manufacturing (LOM). In: Mandal, D.K., Syan, C.S. (Eds.), CAD/CAM, Robotics and Factories of the Future. Lecture Notes in Mechanical Engineering. Springer, New Delhi (pр. 207-216).

Huang, J.A., & Wang, Q.Q. (2020). Review of Stereolithography: Processes and Systems. Processes, 8(9), 1138. https://doi.org/10.3390/pr8091138.

Unkovskiy, A., Schmidt, F., Beuer, F., Li, P., Spintzyk, S., & Fernandez, P.K. (2021). Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis. Digital Workflows and Material Sciences in Dental Medicine, J. Clin. Med., 10(5), 1070. https://doi.org/10.3390/jcm10051070.

Ichiro, O., Keita, A., Shingo, S., & Yasuhiko, H. (2000). Producing a Full-Scale Model From Computed Tomographic Data with the Rapid Prototyping Technique Using the Binder Jet Method. Journal of Craniofacial Surgery, 11(6), 527-537.

Hodder, K.J., Chalaturnyk, R.J. (2019). Bridging additive manufacturing and sand casting: Utilizing foundry sand. Additive Manufacturing, 28, 649-660. https://doi.org/10.1016/j.addma.2019.06.008.

Xu, J., Gu, X., Ding, D., Pan, Z., & Chen, K. (2018). A review of slicing methods for directed energy deposition based additive manufacturing. Rapid Prototyping Journal, 24(6), 1012-1025. https://doi.org/10.1108/RPJ-10-2017-0196.

Saboori, A., Avers, A., Marchese, G., Biamino, S., Lombardi, M., & Fino, P. (2019). Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci., 9(16), 3316. https://doi.org/10.3390/app9163316.

Šljivić, M., Fragassa, C., Pavlović, A., Kraišnik, M., Ilić, J., & Stanojević, M. (2016). Additive manufacturing of functional parts based on material extrusion technology. Contemporary Materials VII-2, 7(2). https://doi.org/10.7251/COMEN1602178S.

Kampker, A., Triebs, J., Kawollek, S., Ayvaz, P., & Hohenstein, S. (2019). Review on Machine Designs of Material Extrusion based Additive Manufacturing (AM) Systems - Status-Quo and Potential Analysis for Future AM Systems. Procedia CIRP, 81, 815-819. https://doi.org/10.1016/j.procir.2019.03.205.

Moore, J.P., & Williams, C.B. (2015). Fatigue properties of parts printed by PolyJet material jetting. Moore. Rapid prototyping journal, 21(6), 675-685. doi:10.1108/RPJ-03-2014-0031.

Tyagi, S., Yadav, A., Deshmukh, S. (2022). Review on mechanical characterization of 3D printed parts created using material jetting process. Materials Today, 51(1), 1012-1016. https://doi.org/10.1016/j.matpr.2021.07.073.

Jabari, E., Liravi, F., Davoodi, E., Lin, L., & Toyserkani E. (2020). High speed 3D materialjetting additive manufacturing of viscous graphene-based ink with high electrical conductivity. Additive Manufacturing, 35, 101330. https://doi.org/10.1016/j.addma.2020.101330.

Silva, M.R., Pereira, A.M., Sampaio, Á.M., & Pontes, A.J. (2021). Assessment of the Dimensional and Geometric Precision of Micro-Details Produced by Material Jetting. Materials, 14(8), 1989. https://doi.org/10.3390/ma14081989.

Ya, Y.L., Wang, C., Sing, S.L., Dikshit, V., Yeong, W.Y., & Wei, J. (2017). Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precision Engineering, 50, 275-285. https://doi.org/10.1016/j.precisioneng.2017.05.015.

Willems, E., Turon-Vinas, M., Camargo dos Santos, B., Hooreweder, B.V., Zhang, F., Meerbeek Van, B., & Vleugels, J. (2021). Additive manufacturing of zirconia ceramics by material jetting. Journal of the European Ceramic Society, 41(10), 5292-5306. https://doi.org/10.1016/j.jeurceramsoc.2021.04.018.

Song, J.L., Li, Y.T., Deng, Q.L., & Hu, D.J. (2007). Rapid prototyping manufacturing of silica sand patterns based on selective laser sintering. Journal of Materials Processing Technology, 187-188, 614-618. https://doi.org/10.1016/j.jmatprotec.2006.11.108.

Li, Yang, Shi-yan, Tang, Zi-tian Fan, Wen-ming, Jiang, & Xin-wang, Liu. (2021). Rapid casting technology based on selective laser sintering. China Foundry, 18, 296-306.

Morales-Planas, S., Minguella-Canela, J., Lluma-Fuentes, J., Travieso-Rodriguez, J.A., García-Granada, A.-A. (2018). Multi Jet Fusion PA12 Manufacturing Parameters for Watertightness, Strength and Tolerances. Materials, 11(8), 1472. https://doi.org/10.3390/ma11081472.

Padmakumar, M. (2020). Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques. Lasers in Manufacturing and Materials Processing, 7, 338-371.

Demir, A.G., Monguzzi, L., & Previtali, B. (2017). Selective laser melting of pure Zn with high density for biodegradable implant manufacturing. Additive Manufacturing, 15, 20-28. https://doi.org/10.1016/j.addma.2017.03.004.

Boniotti, L., Beretta, S., Patriarca, L., Rigoni, L., & Foletti, S. (2019). Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM. International Journal of Fatigue, 128, 105181. https://doi.org/10.1016/j.ijfatigue.2019.06.041.

Nakagawa, T., Kunieda, M., & Liu, S.-D. (1985). Laser Cut Sheet Laminated Forming Dies by Diffusion Bonding. Proceedings of the Twenty-Fifth International Machine Tool Design and Research Conference (рр. 505-510).

Raines, R., Day, J.B., & Salary, R. (2022). Experimental Characterization of the Mechanical Properties of Medical-Grade Dental Implants, Fabricated Using Vat-Photopolymerization Additive Manufacturing Process. MSEC, 001(07), A. 011, 85436. https://doi.org/10.1115/MSEC2022-85436.

Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., & Basit, A.W. (2021). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 329, 743-757. https://doi.org/10.1016/j.jconrel.2020.10.008.

Xu, Z., Hensleigh, R., Gerard, N.J.R.K., Cui, H., Oudich, M., Chen, W., Jing, Y., Zheng, X. (R.). (2021). Vat photopolymerization of fly-like, complex micro-architectures with dissolvable supports. Additive Manufacturing, 47, 102321. https://doi.org/10.1016/j.addma.2021.102321.

Sameni, F., Ozkan, B., Karmel, S., Engstrøm, D. S., & Sabet, E. (2022). Large Scale Vat-Photopolymerization of Investment Casting Master Patterns: The Total Solution. Polymers, 14(21), 4593. https://doi.org/10.3390/polym14214593.

##submission.downloads##

Опубліковано

2023-08-16

Як цитувати

Петренко, І. ., Болотов, М., & Ганєєв, Т. (2023). Компаративний аналіз технологій адитивного виробництва в галузі машинобудування. Технічні науки та технології, (2 (32), 117–140. https://doi.org/10.25140/2411-5363-2023-2(32)-117-140

Номер

Розділ

ПРИКЛАДНА МЕХАНІКА, МАТЕРІАЛОЗНАВСТВО ТА МАШИНОБУДУВАННЯ